

Msc. Microsystems Engineering - Introduction to the programme

Prof. Dr. Moritz Diehl, Dean of Studies

9 October 2018

The technology

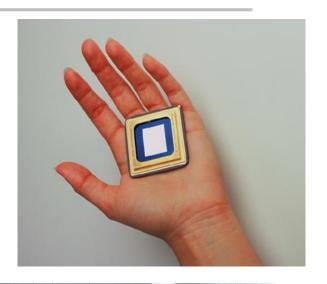
A macrosystem

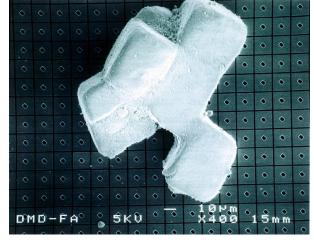
The Airbus A380

- Approximately 1 Million single parts!
 - One Wing: 32,000 parts
- Costs: \$ 275 Millions
 - Average per single part \$ 275
- High effort for single part fabrication

AIRBUS

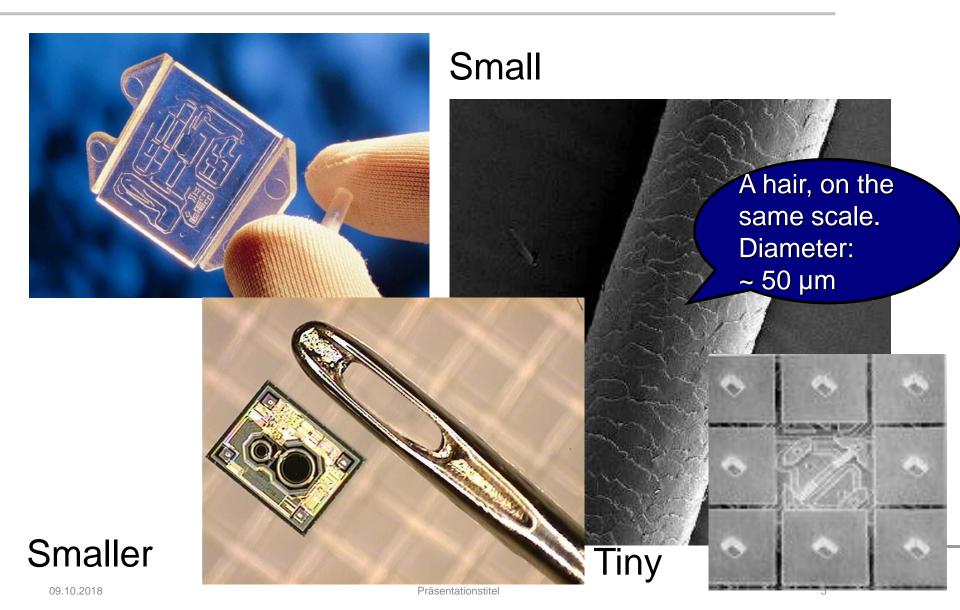
Can you imagine such a system with 2 Million parts?

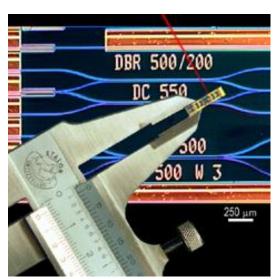

A microsystem

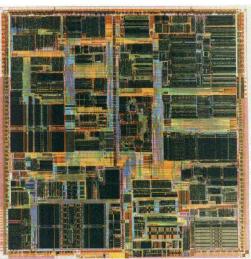

The DMD

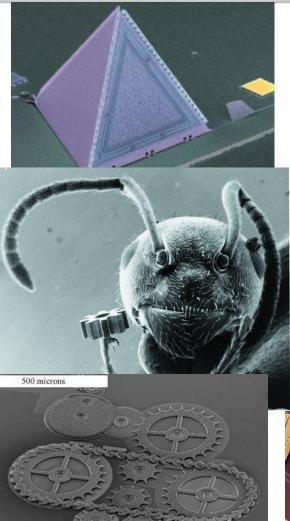
- Digital Micro-mirror Device
- 1.6 cm x 1.6 cm
- 508,800 mirrors 17 μm x 24 μm
- ~ 2.2 million parts
- Price: ~ € 2 000
- Price / part: < 0.1 Cent
- Mass fabrications

Microsystems


- Many functions
- Small volume




Microsystems are small



A huge variety in microsystems

Microsystems are everywhere

Medicine

- Minimally-invasive surgery
- Diagnostics

Communications

- Fiber optics
- Mobile phones

Consumer

- Autonomous networks
- Sensors

Industry

- Process management
- Instrumentation

Automobile

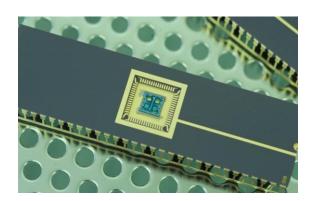
- Rotatio rate sensors
- Airbags

The career

Studies: technical skills

Educational goal:

 To graduate students who can go from idea to product



- Problem definition starts now
- Solutions & evaluation

Design & development

- Fabrication
- Characterization & optimization
- Packaging
- System testing & qualification
- Transfer to production

Studies: Non-technical skills

- Technical excellence is a given...
- ... but graduates also need:
 - Ability to work in a team
 - Social competence
 - Creativity
 - Openness to new ideas
 - Self-confidence
 - Communication skills
 - Entrepreneurial thinking
 - Ability to motivate, oneself and others
 - Leadership capabilities

Where do I go with my degree?

Microsystems engineers become:

- Entrepreneurs, technicians, engineers, group leaders,

managers, CEOs, astronauts,...

Potential employers:

- Large & small companies of all types
- Startups and spin-offs

What do employers want?

- Potential for development
- Ability to learn
- Communications ability (in English and German!)
- Experience, experience, experience
- Particular skills? Not so much...

The department

Faculty of Engineering

- Faculty in operation since 1995
- Department of Computer Science (IIF)
 - 18 professors / ~ 800 students
- Department of Microsystems Engineering (IMTEK)
 - 21 professors / ~ 750 students
- Department of Sustainable Systems Engineering (INATECH)
 - 7 professors / ~ 150 students

IMTEK Professors

22 Laboratories at IMTEK

- MEMS ApplicationsProf. Dr. Roland Zengerle
- Assembly and Packaging Technology Prof. Dr. Jürgen Wilde
- Bio- and Nano-PhotonicsProf. Dr. Alexander Rohrbach
- Biomedical Microtechnology Prof. Dr. Thomas Stieglitz
- Biomicrotechnology Prof. Dr. Ulrich Egert
- Chemistry and Physics of Interfaces
 Prof. Dr. Jürgen Rühe
- Design of MicrosystemsProf. Dr. Peter Woias
- Electrical Instrumentation Prof. Dr. Leonhard Michael Reindl
- Gas SensorsProf. Dr. Juergen Woellenstein
- Materials Process Technology
 Prof. Dr. Thomas Hanemann

Micro- and Material Mechanics Prof. Dr. Christoph Eberl

Microactuators

Prof. Dr. Ulrike Wallrabe

Microelectronics

Prof. Dr. Yiannos Manoli

Micro-optics

Prof. Dr. Hans Zappe

Microsystems Materials

Prof. Dr. Oliver Paul

Nanotechnology

Prof. Dr. Margit Zacharias

Optical Systems

Prof. Dr. Carsten Buse

Sensors

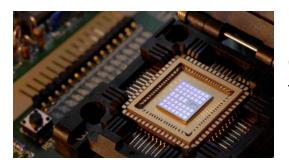
Prof. Dr. Gerald Urban

Simulation

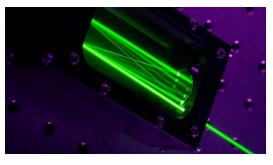
Prof. Dr. Lars Pastewka

Smart Systems Integration

Prof. Dr. Alfons Dehé


Systems Theory

Prof. Dr. Moritz Diehl



Our foci in research and teaching

- Circuits and Systems
- Design and Simulation
- Biomedical engineering
- Lab-on-a-chip
- Materials
- Photonics
- Process Engineering
- Sensors and Actuators

Chip integrated fuel cell

Optical gas sensor

Electrode array for the brain

The curriculum

Microsystems Engg. education

General principles:

- Interdisciplinary basic education in electrical engineering, physics, chemistry, materials science, technology
- Hands-on education lab classes in the clean room, electronics and chemistry lab classes,
 - system design project...
- Systems and application oriented education with a broad, encompassing view
- Fit for business non-technical education: project management, IP, business plans, company financing...

Microsystems Engg. education

Structural principles of all study programs at the faculty

- 30 ECTS per semester
- 30 hours work load per credit point
- All programs are organized in modules
- A module can consist of one or several courses
- Performance evaluation after the semester

Modules in the study program

Module Components

- Lectures German: Vorlesung (V)
- Exercises German: Übung (Ü)
- Laboratories German: Praktische Übung (PrÜ)

Pass/fail assessments ("Studienleistungen")

- Exercises, reports, mid-term exams...
- Are not part of your final grade, but may be part of a module (for example the exercise sheets)
- Are not always graded (only "pass" or "fail")

Graded assessments ("Prüfungsleistungen")

- Written or oral exams, reports, ...
- Are always graded

MSc. program in Microsystems

Scope of MSE

- Feasible in 4 semesters

 (average duration 5 semesters)
- 120 ECTS

Components

- Mandatory courses
- Concentrations (elective courses)
- MSc thesis

Educational goals

- Research qualification
- Laboratory techniques
- Presentation & reporting capability

MSE – Mandatory modules

Module	Semester	Туре	ECTS
Advanced Microsystems Engineering	All modules to be completed		53
Microelectronics	1	VÜ	5
Micro-mechanics	1	VÜ	5
MST Design Lab I	1	Р	3
Micro-optics	1	VÜ	5
Sensors	1	V+P	5
MST Technologies and Processes	1	VÜ	5
Signal Processing	2	VÜ	5
Assembly and Packaging Tech.	2	VÜ	5
Biomedical Microsystems	2	VÜ	5
Micro-actuators	2	VÜ	5
Micro-fluidics	2	VÜ	5
Mathematics	This module to be completed		5
Probability and Statistics	1	VÜ	5

MSE – Elective modules

Module	Semester	Туре	ECTS
2 concentration areas to be chosen. At least 9 ECTS in each of them. Total ECTS required 32			
Circuits and Systems	2-4		
Design and Simulation	2-4		
Life Sciences: Biomedical Engineering	2-4		
Life Sciences: Lab-on-a-chip	2-4		
Materials	2-4		
MEMS Processing	2-4		
Photonics	2-4		
Sensors and Actuators	2-4		
Personal Profile	2-4		
Master's thesis (mandatory)	3-4		30
Total	1-4		120

Systems theory II

MSE and MST joint concentrations

Examples of courses offered in the concentration areas (may vary from year to year)

ECTS	Module	ECTS
	Materials	
3	Atomic force microscopy	3
3	Biomaterials	3
3	Ceramics for MST	3
3	Materials testing and analysis	3
3	Nanostructured optical surfaces	3
3	Nanotechnology	3
3	Polymers for MST	3
3		
3		
	MEMS processing	
3	Advanced silicon technology	3
3	Applications of LIGA	3
3	Ceramics laboratory	3
3	Lithography	3
3	Low-cost micromachining	3
3	Microstructured polymer components	3
3	Thermal microsystems	3
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Materials Atomic force microscopy Biomaterials Ceramics for MST Materials testing and analysis Nanostructured optical surfaces Nanotechnology Polymers for MST MEMS processing Advanced silicon technology Applications of LIGA Ceramics laboratory Lithography Low-cost micromachining Microstructured polymer components

MSE and MST joint concentrations

Life sciences: Biomedical engineering		
Biomedical engineering I (electrical signals)	3	
Biomedical engineering II (non-electrical signals)	3	
Biomedical measurements and instrumentation lab	3	
Biomedical microtechnology	3	
Biotelemetry and health telematics	3	
Fundamentals of electrical stimulation	3	
Implant fabrication technology	3	
MST in medicine	3	

Life sciences: Lab-on-a-chip Analytics with microsystems 3 Bio-MEMS 3 Computational fluid dynamics 3 DNA analytics 3 Micro process engineering 3 Microfluidic platforms 3 Molecular simulation 3

Personal Profile Courses from any of the concentration

Courses from any of the concentration	3
areas	

Sensors and actuators	
Applications of micro-actuators	3
Bionic sensors	3
Lasers	3
Micro-acoustics	3
Micro-mechanical sensors	3
Optical micro-sensors	3
Position sensors	3
Sensors laboratory	3

Octions laboratory	
Photonics	
Basic Optics Laboratory	3
Basic and Advanced Optics Laboratory	3
Advanced topics in Micro-Optics	3
Micro-optics Laboratory I and II	3
Modern Optics I and II	3
Nonlinear optical materials	3
Optical Materials	3
Optical Trapping and Partikel Tracking	3
Optical measurement techniques	3
Optoelectronic Devices	3
Photonic imaging	3
Wave and Fourier Optics	3

MSE courses, first semester

Mon	Tue	Wed	Thu	Fri
	08:00 - 10:00 Probability and Statistics lecture Room 101 01 009/013	08:00-10:00 Probability and Statistics, tutorial Room 101 01 009/013	8:00 – 10:00 Microelectronics tutorial Room 101 00 036	
10:00 - 12:00 Micromechanics Lecture Room 101 00 014		10:00-12:00 Microelectronics lecture Room 101 00 036	10:00 - 12:00 Micro-optics lecture Room 101 00 036	10:00-12:00 Micromechanics tutorial Room 101 00 014
13:00 – 14:00 MST Technologies and Processes, tutorial Room 101 00 026	13:00 - 14:00 Sensors Lecture Room 101 00 010/014		12:00 - 14:00 Micro-optics tutorial Room 101 00 014 Room 101 01 016	12:00 - 14:00 MST Design Lab I Room 082 00 006
14:00 - 16:00 Sensors Lecture Room 101 00-010/014			14:00 – 16:00 MST Technologies and Processes, lecture Room 101 00 026	14:00 - 14:00 - 16:00
	16:00 – 18:00 MST Design Lab I Lecture Room 082 00 006		16:00 - 18:00 Sensors Lab, group 1 Room 078 00 035	16:00 - 18:00 Sensors Lab, group 4 Room 078 00 035
			18:00 - 20:00 Sensors Lab, group 2 Room 078 00 035	

Plagiarism is:

- Using someone else's texts, pictures, reports, data, solutions, whatever....

- ... without giving the **source**

Sources include:

- Books, the internet, colleagues, ...

To make it clear:

- Plagiarism is illegal

The simple "if...then" loops:

- If you plagiarize...(once)
- ... then you fail
- If you plagiarize repeatedly (=twice)
- ... then your academic career is over.

Some thoughts to share...

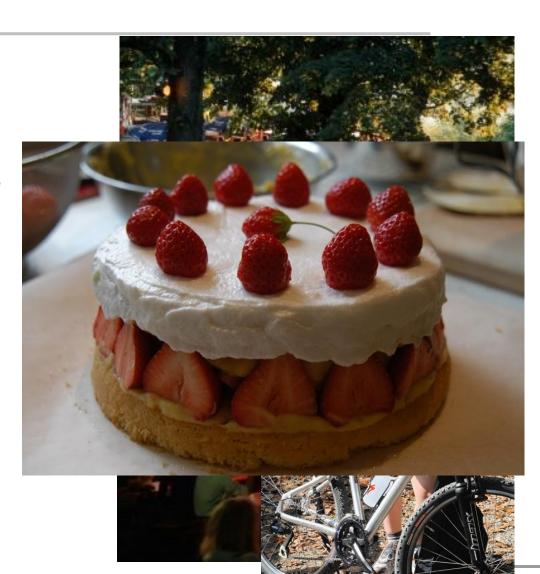
A Master program in Germany

- You have to organize your courses and your life
- You have to register for your courses on your own
- We challenge you from the first day on to assess given knowledge...
- ...and to transfer given knowledge from one course to another
- We will show you many aspects of microsystems related disciplines and applications to broaden your knowledge and increase the oppurtunites for an exciting career.

That means for you...

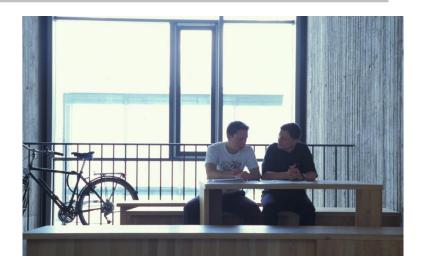
- YOU have to take the initiative to ASK, ASK and read until you understand
- WE give you the overview, YOU have to learn the details

The art of living


Präsentationstitel

Enjoy being a student!

- It is helpful to
- Structure your day
- Have unstructured free time
- Meet colleagues
- Keep up with your work
- Turn off on occasion


Don't forget

- Family
- Friends
- Sports
- Culture
- Autumn leaves...

- Buy textbooks
- Contact your mentor
- Form study groups
- Poke around in the laboratories
- Find an MSc thesis advisor early
- Stay registered
- Get enough sleep
 - b But not in my class, please

Every student has a faculty mentor

- A professor as a contact person
- Assigned by the Dean of Studies

Student's contact for:

- Problems, questions, clarifications, job searches, recommendations, or just general advising

After graduation

Apply for a job

In Industry

- Find out what you like during your MSc program
- Use job portals and company websites to monitor the market
- Visit career workshops to gather tips how to apply
- Go to recruiting fairs

Phd. as research assistant

- Perform a research project (on your own)
- Look for an open position
- Apply
- Get paid for the PhD project
- Overtake responsibility as project assistant
- Support your professor with respect to educational tasks
- Duration: 3-5 years

Contact persons I

- Dean of studies: Prof. Moritz Diehl
 - Moritz.diehl@imtek.de
 - 203 67852
- Program coordinator: Ursula Epe
 - studienkoordination@tf.uni-freiburg.de
 - 203 8340

- Dr. Andreas Greiner
- 203 67479
- Dr. Oswald Prucker
 - 203 7164
- studienberatung@imtek.de

Contact persons II

Examination office

- Anne-Julchen Müller
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083
- Susanne Storck
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083

Thank you very much for your attention!

