Msc. Microsystems Engineering - Introduction to the programme

Prof. Dr. Moritz Diehl, Dean of Studies

9 October 2018
The technology
A macrosystem

The Airbus A380

- Approximately 1 Million single parts!
 - One Wing: 32,000 parts
- Costs: $ 275 Millions
 - Average per single part $ 275
- High effort for single part fabrication

Can you imagine such a system with 2 Million parts?
A microsystem

The DMD
- Digital Micro-mirror Device
- 1.6 cm x 1.6 cm
- 508,800 mirrors 17 µm x 24 µm
- ~ 2.2 million parts
- Price: ~ € 2 000
- Price / part: < 0.1 Cent
- Mass fabrications

Microsystems
- Many functions
- Small volume
Microsystems are small

Small

A hair, on the same scale. Diameter: ~ 50 µm

Smaller

Tiny
A huge variety in microsystems
Microsystems are everywhere

- **Medicine**
 - Minimally-invasive surgery
 - Diagnostics

- **Communications**
 - Fiber optics
 - Mobile phones

- **Consumer**
 - Autonomous networks
 - Sensors

- **Industry**
 - Process management
 - Instrumentation

- **Automobile**
 - Rotatio rate sensors
 - Airbags
The career
Studies: technical skills

- Educational goal:
 - To graduate students who can go from idea to product

- The required skills:
 - Problem definition
 - Solutions & evaluation

- Design & development
 - Fabrication
 - Characterization & optimization
 - Packaging
 - System testing & qualification
 - Transfer to production
 - Marketing

The challenge starts now
Studies: Non-technical skills

- Technical excellence is a given...

- but graduates also need:
 - Ability to work in a team
 - Social competence
 - Creativity
 - Openness to new ideas
 - Self-confidence
 - Communication skills
 - Entrepreneurial thinking
 - Ability to motivate, oneself and others
 - Leadership capabilities
Where do I go with my degree?

- Microsystems engineers become:
 - Entrepreneurs, technicians, engineers, group leaders, managers, CEOs, astronauts,…

- Potential employers:
 - Large & small companies of all types
 - Startups and spin-offs

- What do employers want?
 - Potential for development
 - Ability to learn
 - Communications ability (in English and German!)
 - Experience, experience, experience
 - Particular skills? Not so much…
The department
Faculty of Engineering

- Faculty in operation since 1995
- Department of Computer Science (IIF)
 - 18 professors / ~ 800 students
- Department of Microsystems Engineering (IMTEK)
 - 21 professors / ~ 750 students
- Department of Sustainable Systems Engineering (INATECH)
 - 7 professors / ~ 150 students
22 Laboratories at IMTEK

- MEMS Applications
 Prof. Dr. Roland Zengerle
- Assembly and Packaging Technology
 Prof. Dr. Jürgen Wilde
- Bio- and Nano-Photonics
 Prof. Dr. Alexander Rohrbach
- Biomedical Microtechnology
 Prof. Dr. Thomas Stieglitz
- Biomicrotechnology
 Prof. Dr. Ulrich Egert
- Chemistry and Physics of Interfaces
 Prof. Dr. Jürgen Rühe
- Design of Microsystems
 Prof. Dr. Peter Woias
- Electrical Instrumentation
 Prof. Dr. Leonhard Michael Reindl
- Gas Sensors
 Prof. Dr. Juergen Woellenstein
- Materials Process Technology
 Prof. Dr. Thomas Hanemann
- Micro- and Material Mechanics
 Prof. Dr. Christoph Eberl
- Microactuators
 Prof. Dr. Ulrike Wallrabe
- Microelectronics
 Prof. Dr. Yiannos Manoli
- Micro-optics
 Prof. Dr. Hans Zappe
- Microsystems Materials
 Prof. Dr. Oliver Paul
- Nanotechnology
 Prof. Dr. Margit Zacharias
- Optical Systems
 Prof. Dr. Carsten Buse
- Sensors
 Prof. Dr. Gerald Urban
- Simulation
 Prof. Dr. Lars Pastewka
- Smart Systems Integration
 Prof. Dr. Alfons Dehé
- Systems Theory
 Prof. Dr. Moritz Diehl
Our foci in research and teaching

- Circuits and Systems
- Design and Simulation
- Biomedical engineering
- Lab-on-a-chip
- Materials
- Photonics
- Process Engineering
- Sensors and Actuators
The curriculum
Microsystems Engg. education

General principles:

- **Interdisciplinary basic education** in electrical engineering, physics, chemistry, materials science, technology

- **Hands-on education**
 - lab classes in the clean room, electronics and chemistry lab classes, system design project...

- **Systems and application oriented** education with a broad, encompassing view

- **Fit for business** - non-technical education: project management, IP, business plans, company financing...
Microsystems Engg. education

Structural principles of all study programs at the faculty

- 30 ECTS per semester
- 30 hours work load per credit point
- All programs are organized in modules
- A module can consist of one or several courses
- Performance evaluation after the semester
Modules in the study program

- **Module Components**
 - Lectures – German: Vorlesung (V)
 - Exercises – German: Übung (Ü)
 - Laboratories – German: Praktische Übung (PrÜ)

- **Pass/fail assessments (“Studienleistungen”)**
 - Exercises, reports, mid-term exams…
 - Are not part of your final grade, but may be part of a module (for example the exercise sheets)
 - Are not always graded (only “pass” or “fail”)

- **Graded assessments (“Prüfungsleistungen”)**
 - Written or oral exams, reports, …
 - Are always graded
MSc. program in Microsystems

Scope of MSE
- Feasible in 4 semesters (average duration 5 semesters)
 - 120 ECTS

Components
- Mandatory courses
- Concentrations (elective courses)
- MSc thesis

Educational goals
- Research qualification
- Laboratory techniques
- Presentation & reporting capability
MSE – Mandatory modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Semester</th>
<th>Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Microsystems Engineering</td>
<td>All modules to be completed</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>Microelectronics</td>
<td>1</td>
<td>VÜ</td>
<td>5</td>
</tr>
<tr>
<td>Micro-mechanics</td>
<td>1</td>
<td>VÜ</td>
<td>5</td>
</tr>
<tr>
<td>MST Design Lab I</td>
<td>1</td>
<td>P</td>
<td>3</td>
</tr>
<tr>
<td>Micro-optics</td>
<td>1</td>
<td>VÜ</td>
<td>5</td>
</tr>
<tr>
<td>Sensors</td>
<td>1</td>
<td>V+P</td>
<td>5</td>
</tr>
<tr>
<td>MST Technologies and Processes</td>
<td>1</td>
<td>VÜ</td>
<td>5</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>2</td>
<td>VÜ</td>
<td>5</td>
</tr>
<tr>
<td>Assembly and Packaging Tech.</td>
<td>2</td>
<td>VÜ</td>
<td>5</td>
</tr>
<tr>
<td>Biomedical Microsystems</td>
<td>2</td>
<td>VÜ</td>
<td>5</td>
</tr>
<tr>
<td>Micro-actuators</td>
<td>2</td>
<td>VÜ</td>
<td>5</td>
</tr>
<tr>
<td>Micro-fluidics</td>
<td>2</td>
<td>VÜ</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics</td>
<td>This module to be completed</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Probability and Statistics</td>
<td>1</td>
<td>VÜ</td>
<td>5</td>
</tr>
</tbody>
</table>
MSE – Elective modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Semester</th>
<th>Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 concentration areas to be chosen. At least 9 ECTS in each of them. Total ECTS required 32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuits and Systems</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and Simulation</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Sciences: Biomedical Engineering</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Sciences: Lab-on-a-chip</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEMS Processing</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photonics</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensors and Actuators</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Profile</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master's thesis (mandatory)</td>
<td>3-4</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>1-4</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>
MSE and MST joint concentrations

Examples of courses offered in the concentration areas (may vary from year to year)

<table>
<thead>
<tr>
<th>Module</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuits and systems</td>
<td></td>
</tr>
<tr>
<td>Analog CMOS circuit design</td>
<td>3</td>
</tr>
<tr>
<td>Autonomous microsystems</td>
<td>3</td>
</tr>
<tr>
<td>Circuit design for sensors and actuators</td>
<td>3</td>
</tr>
<tr>
<td>Innovative energy systems</td>
<td>3</td>
</tr>
<tr>
<td>Integrated microsystems</td>
<td>3</td>
</tr>
<tr>
<td>Optical microsystems</td>
<td>3</td>
</tr>
<tr>
<td>VLSI system design</td>
<td>3</td>
</tr>
<tr>
<td>Wireless technologies</td>
<td>3</td>
</tr>
<tr>
<td>Dynamics of MEMS</td>
<td>3</td>
</tr>
<tr>
<td>Design and simulation</td>
<td></td>
</tr>
<tr>
<td>CAD</td>
<td>3</td>
</tr>
<tr>
<td>Control of embedded systems</td>
<td>3</td>
</tr>
<tr>
<td>Design of large-scale MST systems</td>
<td>3</td>
</tr>
<tr>
<td>FEM simulation</td>
<td>3</td>
</tr>
<tr>
<td>Multi-scale simulation</td>
<td>3</td>
</tr>
<tr>
<td>Quantum mechanics for MEMS</td>
<td>3</td>
</tr>
<tr>
<td>Reliability</td>
<td>3</td>
</tr>
<tr>
<td>Systems theory II</td>
<td>3</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>Atomic force microscopy</td>
<td>3</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>Ceramics for MST</td>
<td>3</td>
</tr>
<tr>
<td>Materials testing and analysis</td>
<td>3</td>
</tr>
<tr>
<td>Nanostructured optical surfaces</td>
<td>3</td>
</tr>
<tr>
<td>Nanotechnology</td>
<td>3</td>
</tr>
<tr>
<td>Polymers for MST</td>
<td>3</td>
</tr>
<tr>
<td>MEMS processing</td>
<td></td>
</tr>
<tr>
<td>Advanced silicon technology</td>
<td>3</td>
</tr>
<tr>
<td>Applications of LIGA</td>
<td>3</td>
</tr>
<tr>
<td>Ceramics laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Lithography</td>
<td>3</td>
</tr>
<tr>
<td>Low-cost micromachining</td>
<td>3</td>
</tr>
<tr>
<td>Microstructured polymer components</td>
<td>3</td>
</tr>
<tr>
<td>Thermal microsystems</td>
<td>3</td>
</tr>
</tbody>
</table>
MSE and MST joint concentrations

Life sciences: Biomedical engineering
- Biomedical engineering I (electrical signals) 3
- Biomedical engineering II (non-electrical signals) 3
- Biomedical measurements and instrumentation lab 3
- Biomedical microtechnology 3
- Biotelemetry and health telematics 3
- Fundamentals of electrical stimulation 3
- Implant fabrication technology 3
- MST in medicine 3

Life sciences: Lab-on-a-chip
- Analytics with microsystems 3
- Bio-MEMS 3
- Computational fluid dynamics 3
- DNA analytics 3
- Micro process engineering 3
- Microfluidic platforms 3
- Molecular simulation 3

Sensors and actuators
- Applications of micro-actuators 3
- Bionic sensors 3
- Lasers 3
- Micro-acoustics 3
- Micro-mechanical sensors 3
- Optical micro-sensors 3
- Position sensors 3
- Sensors laboratory 3

Photonics
- Basic Optics Laboratory 3
- Basic and Advanced Optics Laboratory 3
- Advanced topics in Micro-Optics 3
- Micro-optics Laboratory I and II 3
- Modern Optics I and II 3
- Nonlinear optical materials 3
- Optical Materials 3
- Optical Trapping and Particle Tracking 3
- Optical measurement techniques 3
- Optoelectronic Devices 3
- Photonic imaging 3
- Wave and Fourier Optics 3

Personal Profile
- Courses from any of the concentration areas 3
MSE courses, first semester

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>08:00 - 10:00 Probability and Statistics lecture Room 101 01 009/013</td>
<td>08:00-10:00 Probability and Statistics, tutorial Room 101 01 009/013</td>
<td>8:00 – 10:00 Microelectronics tutorial Room 101 00 036</td>
<td>10:00-12:00 Micromechanics tutorial Room 101 00 014</td>
</tr>
<tr>
<td>10:00 – 12:00 Micromechanics Lecture Room 101 00 014</td>
<td>10:00-12:00 Microelectronics lecture Room 101 00 036</td>
<td>10:00 - 12:00 Micro-optics lecture Room 101 00 036</td>
<td>10:00-12:00 Micromechanics tutorial Room 101 00 014</td>
<td></td>
</tr>
<tr>
<td>13:00 – 14:00 MST Technologies and Processes, tutorial Room 101 00 026</td>
<td>13:00 – 14:00 Sensors Lecture Room 101 00 010/014</td>
<td>12:00 - 14:00 Micro-optics tutorial Room 101 00 014 Room 101 01 016</td>
<td>12:00 - 14:00 MST Design Lab I Room 082 00 005</td>
<td></td>
</tr>
<tr>
<td>14:00 – 16:00 Sensors Lecture Room 101 00-010/014</td>
<td>14:00 – 16:00 MST Technologies and Processes, lecture Room 101 00 026</td>
<td>14:00 – 16:00 Micro-optics tutorial Room 051 00 034 Room 051 00 006</td>
<td>14:00 – 16:00 Sensors Lab, group 3 Room 078 00 035</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16:00 – 18:00 MST Design Lab I Lecture Room 082 00 006</td>
<td>16:00 – 16:00 Sensors Lab, group 1 Room 078 00 035</td>
<td>16:00 – 18:00 Sensors Lab, group 4 Room 078 00 035</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18:00 – 20:00 Sensors Lab, group 2 Room 078 00 035</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

09.10.2018
Plagiarism is:
- Using someone else’s texts, pictures, reports, data, solutions, whatever….
- ... without giving the source

Sources include:
- Books, the internet, colleagues, …

To make it clear:
- Plagiarism is illegal

The simple „if…then“ loops:
- If you plagiarize...(once)
- … then you fail
- If you plagiarize repeatedly (=twice)
- … then your academic career is over.
Some thoughts to share…

- **A Master’s program in Germany**
 - You have to organize your courses and your life
 - You have to register for your courses on your own
 - We challenge you from the first day on to assess given knowledge…
 - …and to transfer given knowledge from one course to another
 - We will show you many aspects of microsystems related disciplines and applications to broaden your knowledge and increase the opportunities for an exciting career.

- **That means for you…**
 - YOU have to take the initiative to ASK, ASK and read until you understand
 - WE give you the overview, YOU have to learn the details
The art of living

Enjoy being a student!
- It is helpful to
- Structure your day
- Have unstructured free time
- Meet colleagues
- Keep up with your work
- Turn off on occasion

Don‘t forget
- Family
- Friends
- Sports
- Culture
- Autumn leaves…
Moreover...

- Buy textbooks
- Contact your mentor
- Form study groups
- Poke around in the laboratories
- Find an MSc thesis advisor early
- Stay registered
- Get enough sleep
 - But not in my class, please
Mentoring

- Every student has a faculty mentor
 - A professor as a contact person
 - Assigned by the Dean of Studies

- Student’s contact for:
 - Problems, questions, clarifications, job searches, recommendations, or just general advising
After graduation
Apply for a job

In Industry
- Find out what you like during your MSc program
- Use job portals and company websites to monitor the market
- Visit career workshops to gather tips how to apply
- Go to recruiting fairs
Phd. as research assistant

- Perform a research project (on your own)
- Look for an open position
- Apply
- Get paid for the PhD project
- Overtake responsibility as project assistant
- Support your professor with respect to educational tasks
- Duration: 3-5 years
Contact persons I

- **Dean of studies**: Prof. Moritz Diehl
 - Moritz.diehl@imtek.de
 - 203 67852

- **Program coordinator**: Ursula Epe
 - studienkoordination@tf.uni-freiburg.de
 - 203 8340

- **Student advisers**:
 - Dr. Andreas Greiner
 - 203 67479
 - Dr. Oswald Prucker
 - 203 7164
 - studienberatung@imtek.de
Contact persons II

- Examination office
 - Anne-Julchen Müller
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083
 - Susanne Storck
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083
Thank you very much for your attention!