Msc. Microsystems Engineering - Introduction to the programme
Prof. Dr.-Ing. Jürgen Wilde

12th October 2022
The technology
A macro-system

The Airbus A380
- Approximately 1 Million single parts!
 - One Wing: 32,000 parts
- Costs: $275 Millions
 - Average per single part $275
- High effort for single part fabrication

Can you imagine such a system with 2 Million parts?
A microsystem

The DMD
- Digital Micro-mirror Device
- 1.6 cm x 1.6 cm
- 508,800 mirrors 17 µm x 24 µm
- ~ 2.2 million parts
- Price: ~ € 2 000
- Price / part: < 0.1 Cent
- Mass fabrications

Microsystems
- Many functions
- Small volume
Microsystems are small

Small

A hair, on the same scale. Diameter: ~ 50 µm

Smaller

Tiny
A huge variety in microsystems
Microsystems are everywhere

- **Medicine**
 - Minimally-invasive surgery
 - Diagnostics

- **Communications**
 - Fiber optics
 - Mobile phones

- **Consumer**
 - Autonomous networks
 - Sensors

- **Industry**
 - Process management
 - Instrumentation

- **Automobile**
 - Gyroscope
 - Airbags
The career
Studies: technical skills

- Educational goal:
 - To graduate students who can go from idea to product

- The required skills:
 - Problem definition
 - Solutions & evaluation

- Design & development
 - Fabrication
 - Characterization & optimization
 - Packaging
 - System testing & qualification
 - Transfer to production
 - Marketing

The challenge starts now
Studies: Non-technical skills

- Technical excellence is a given...

- but graduates also need:
 - Ability to work in a team
 - Social competence
 - Creativity
 - Openness to new ideas
 - Self-confidence
 - Communication skills
 - Entrepreneurial thinking
 - Ability to motivate, oneself and others
 - Leadership capabilities
Where can I go with my degree?

- **Microsystems engineers become:**
 - Entrepreneurs, technicians, engineers, group leaders, managers, CEOs, astronauts,…

- **Potential employers:**
 - Large & small companies of all types
 - Startups and spin-offs

- **What do employers want?**
 - Potential for development
 - Ability to learn
 - Communications ability (in English **and** German!)
 - Experience, experience, experience
 - Particular skills? Not so much…
The department
Faculty of Engineering

- Faculty in operation since 1995
- Department of Computer Science (IIF)
 - 19 professors / ~ 840 students
- Department of Microsystems Engineering (IMTEK)
 - 22 professors / ~ 830 students
- Department of Sustainable Systems Engineering (INATECH)
 - 7 professors / ~ 250 students
MEMS Applications
Prof. Dr. Roland Zengerle

Assembly and Packaging Technology
Prof. Dr. Jürgen Wilde

Bio- and Nano-Photonics
Prof. Dr. Alexander Rohrbach

Biomedical Microtechnology
Prof. Dr. Thomas Stieglitz

Biomicrotechnology
Prof. Dr. Ulrich Egert

Chemistry and Physics of Interfaces
Prof. Dr. Jürgen Rühe

Design of Microsystems
Prof. Dr. Peter Woias

Electr. Instrumentation & Embedded Sys.
Prof. Dr. Stefan Rupitsch

Gas Sensors
Prof. Dr. Juergen Woellenstein

Materials Process Technology
Prof. Dr. Thomas Hanemann

Micro- and Material Mechanics
Prof. Dr. Christoph Eberl

Microactuators
Prof. Dr. Ulrike Wallrabe

Microelectronics
Prof. Dr. Matthias Kuhl

Micro-optics
Prof. Dr. Hans Zappe

Microsystems Materials
Prof. Dr. Oliver Paul

Nanotechnology
Prof. Dr. Margit Zacharias

Optical Systems
Prof. Dr. Carsten Buse

Sensors
Prof. Dr. Gerald Urban

Simulation
Prof. Dr. Lars Pastewka

Smart Systems Integration
Prof. Dr. Alfons Dehé

Systems Theory
Prof. Dr. Moritz Diehl

Process Technology
Prof. Dr. Bastian E. Rapp
The curriculum
Structural principles

- MSc. Program = 120 ECTS
- ~ 30 ECTS per semester
- 1 ECTS = 30 hours work load
- Mandatory courses are offered every other semester.
- Exams are offered every semester.
- The exam regulations stipulate which courses are to be completed to get the degree, but you can decide when you want to take the respective course and exam.
- It is allowed to study more than 4 semesters.
Modules in the study program

- All programs are organized in modules.
- A module consists of one or several courses and course work.

Module Components

- Lectures – German: Vorlesung (V)
- Exercises – German: Übung (Ü)
- Laboratories – German: Praktikum (Pr) oder Praktische Übung (PrÜ)
- Seminars – German: Seminar (S)
Course work

- **Non-graded course work ("Studienleistungen", SL)**
 - Exercises, reports, mid-term exams...
 - Are not part of your final grade, but may be part of a module (for example weekly exercise sheets)
 - May be graded, or judged only as “pass” or “fail”
 - Unlimited number of attempts

- **Graded course work ("Prüfungsleistungen", PL)**
 - Written or oral exams, reports, presentations,…
 - Are always graded
 - Count in your final grade
 - Limited number of attempts, normally only 2
Mandatory modules in MSc MSE

<table>
<thead>
<tr>
<th>Module</th>
<th>Type</th>
<th>Exam</th>
<th>ECTS</th>
<th>Sem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microelectronics</td>
<td>Le+E</td>
<td>Written exam</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Micro-mechanics</td>
<td>Le+E</td>
<td>Written exam</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>MST Design Laboratory I for Microsystems Engineering</td>
<td>La</td>
<td>Studienleistung</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>MST Technologies and Processes</td>
<td>Le+E</td>
<td>Studienleistung</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Written exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Processing</td>
<td>Le+La</td>
<td>Written exam</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Master’s Module (6 months)</td>
<td></td>
<td>Thesis + Presentation</td>
<td>27 + 3</td>
<td>4</td>
</tr>
</tbody>
</table>

Le = Lecture, E = Exercise, La = Lab course
Compulsory Electives: Advanced Microsystems

Choose 5 from 8 modules; 30 of 48 credits

<table>
<thead>
<tr>
<th>Module</th>
<th>Type</th>
<th>Exam</th>
<th>ECTS</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly and Packaging Technology</td>
<td>Le+E</td>
<td>Written exam</td>
<td>6</td>
<td>1, 2 or 3</td>
</tr>
<tr>
<td>Micro-optics</td>
<td>Le+E</td>
<td>Written exam</td>
<td>6</td>
<td>1 or 3</td>
</tr>
<tr>
<td>Modelling and System Identification</td>
<td>Le+E</td>
<td>Written exam</td>
<td>6</td>
<td>1 or 3</td>
</tr>
<tr>
<td>Probability and Statistics</td>
<td>Le+E</td>
<td>Written exam</td>
<td>6</td>
<td>1 or 3</td>
</tr>
<tr>
<td>Sensors</td>
<td>Le+E</td>
<td>Written exam</td>
<td>6</td>
<td>1 or 3</td>
</tr>
<tr>
<td>Biomedical Microsystems</td>
<td>Le+E</td>
<td>Written exam</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Micro-actuators</td>
<td>Le+E</td>
<td>Written Exam</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Micro-fluidics</td>
<td>Le+E</td>
<td>Written Exam</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Total to be selected 30

Le = Lecture, E = Exercise, La = Lab course
Concentration Areas + Customized Courses

<table>
<thead>
<tr>
<th>Concentration areas (21-30 ECTS)</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuits and Systems</td>
<td></td>
</tr>
<tr>
<td>Materials and Fabrication</td>
<td></td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>Photonics</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>21-30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customized Course Selection</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses from other faculties at</td>
<td></td>
</tr>
<tr>
<td>the University of Freiburg, also</td>
<td>Students can</td>
</tr>
<tr>
<td>courses on German language,</td>
<td>chose</td>
</tr>
<tr>
<td>scientific writing, project</td>
<td></td>
</tr>
<tr>
<td>management</td>
<td></td>
</tr>
<tr>
<td>Courses from the MSc MSE program</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
</tr>
</tbody>
</table>
Elective modules in concentrations

Circuits and Systems
- Angewandte Sensorschaltungstechnik
- Bayesian Methods for Sensing
- CMOS MEMS
- Wireless Sensor Systems
- Energy harvesting
- Analog CMOS Circuit Design
- Mixed-Signal CMOS Circuit Design
- Flight Control Laboratory
- Advanced Assembly and Packaging Technology
- Advanced Microcontroller Lab
- Power Electronics for E-Mobility
- Micro Acoustical Transducers
- Microcontroller Techniques - Praktikum
- Model Predictive Control and Reinforcement Learning
- MST Design Lab II for Microsystems Engineering
- Numerical Optimal Control in Engineering - Project
- Numerical Optimization
- Numerical Optimization Project
- Race Car Control Laboratory
- RF- and Microwave Devices and Circuits
- RF- and Microwave Circuits and Systems
- RF- and Microwave Systems- Design Course
- Sensors and actuators circuit technology
- State Space Control Systems
- Thermoelektrik und thermische Messtechnik
- Wind Energy Systems
- Reliability Engineering

Materials and Fabrication
- Computational physics: material science
- Disposable sensors
- Electrochemical energy applications: fuel cells and electrolysis
- Electrochemical Methods for Engineers
- Energy storage and conversion using fuel cells
- Fortgeschrittene Siliziumtechnologie / Advanced Silicon Technology
- Functional Safety, Security and Sustainability: Active Resilience
- Hardware Design with the Finite-Element-Method
- Ceramic Materials for Microsystems
- Contact, Adhesion, Friction
- Continuum mechanics I with exercises
- Continuum mechanics II with exercises
- Physics of Failure
- Lithography
- Materials for Electronic Systems
- Mechanical Properties and Degradation Mechanisms
- Methods of Material Analysis
- Microstructured Polymer Components
- Nanomaterials
- Nanotechnology
- Nano - Laboratory
- Surface Analysis
- Surface Analysis Laboratory
- Optimierung
- Advanced engineering
- Polymer Processing and Microsystems Engineering
- Quantum Mechanics for Engineers
- Clean Room Laboratory for Engineers
- Quantification of Resilience
- Solar Energy
- Techniken zur Oberflächenmodifizierung / Surface coating Techniques
- Compound semiconductor devices
- From Microsystems to the Nanoworld
- Dynamics of Materials: Material Characterization
Biomedical Engineering

- Analyse von Life Science Hochdurchsatzdaten mit Galaxy
- Selected Problems in Biosignal Processing
- Biofunctional Materials - for medical microsystems and healthcare
- Biomedical Instrumentation I
- Biomedical Instrumentation II
- Biomedical Instrumentation - Laboratory
- BioMEMS
- Bionic Sensors
- Biophysics of cardiac function and signals
- Biophysik - Grundlagen und Konzepte
- Biotechnologie für Ingenieure I: Einführung, Molekular- Biotechnology
 for Engineers I: Introduction, Molecular- and Microbiology
- Biotechnology for Engineers II
- Ethical Aspects of Neurotechnology
- Fundamentals of electrical stimulation
- Introduction to data driven life sciences
- Introduction to physiological control systems
- Machine Learning
- Microfluidics II: Miniaturize, automate and parallelize biochemical analysis: From idea to product launch
- Microsystems technology in Medicine
- Nanobiotechnology
- Neuropsychology - Laboratory
- Neuroprosthetics
- Neuroscience for Engineers
- Signal processing and analysis in brain signals
- Silicon-based Neural Technology
- Implant Manufacturing Technologies
- Implant Manufacturing Technologies - Laboratory
- Biointerfaces I - Basics for Bioanalytical Systems

Photonics

- Advanced Topics in Micro-Optics
- Lasers
- Basic Optics Lab
- Basic and Advanced Optics Lab
- Optical Materials
- Optical Properties of Micro and Nano Structures
- Optical Trapping and Particle Tracking
- Optical MEMS
- Optical Measurement Techniques
- Optical Micro-Sensors
- Optoelectronics
- Photonic Microscopy
- Photovoltaic Energy Conversion for engineers
- Photovoltaic Energy Conversion for engineers II
- Spektroskopische Methoden
- Wave Optics
Corona Information

- Teaching will take place primarily in a classroom setting
- No contact data collection
- No 3G (vaccination, test or recovery status) checks
- In the case of another CORONA wave during the winter semester, necessary measures will possibly be taken again
- It’s recommended to voluntarily wear masks indoors
Corona Information-useful links

Faculty of Engineering:
https://www.tf.uni-freiburg.de/en/corona

University:
https://www.studium.uni-freiburg.de/en?set_language=en

Student Services (SWFR):
https://www.swfr.de/en/corona-faqs/
Exams: The most important rules

- In addition to registering for a module, you need to register for every exam you want to take: https://www.tf.uni-freiburg.de/en/studies-and-teaching/a-to-z-study-faq/de-registration-of-exams

- If failed, you can repeat every exam once. Two exams can be repeated twice.

- If you fail an exam, you will automatically be registered for the retake in the following semester.

- You can only withdraw from an exam, if you are ill or if there is an emergency in your family. https://www.tf.uni-freiburg.de/en/studies-and-teaching/a-to-z-study-faq/withdrawl-from-exams

- For more details, make sure to read the exam regulations.
Plagiarism

- Plagiarism is:
 - Using someone else’s texts, pictures, reports, data, solutions, whatever…..
 - … without giving the source

- Sources include:
 - Books, the internet, colleagues, …

- To make it clear:
 - Plagiarism is illegal

- The simple „if…then“ loops:
 - If you plagiarize...(once)
 - … then you fail
 - If you plagiarize repeatedly (=twice)
 - … then your academic career is over.
Mentoring

- Every student has a faculty mentor
 - A professor as a contact person
 - Assigned by the Dean of Studies
- Student’s contact for:
 - Problems, questions, clarifications, job searches, recommendations, or just general advising
After graduation
Apply for a job

- **In Industry**
 - Find out what you like during your MSc program
 - Use job portals and company websites to monitor the market
 - Visit career workshops to gather tips how to apply
 - Go to recruiting fairs
PhD. as research assistant

- At the university
 - Perform a research project (on your own)
 - Look for an open position
 - Apply
 - Get paid for the PhD project
 - Overtake responsibility as project assistant
 - Support your professor with respect to educational tasks
 - Duration: 3-5 years
Contact persons I

- **Dean of studies:** Prof. Jürgen Wilde
 - juergen.wilde@imtek.de
 - 0761-203 7291

- **Program coordination:**
 - Svenja Andresen
 - studiengangkoordination.mst@imtek.uni-freiburg.de
 - 0761-203 97940

- **Student advisors:**
 - studienberatung@imtek.de
 - Dr. Jochen Kieninger
 - 0761-203 7265
 - Dr. Oswald Prucker
 - 0761-203 7164
Contact persons II

- **Examination office**
 - Anne-Julchen Müller
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083
 - Susanne Storck
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083
Thanks for your attention!