

Msc. Microsystems Engineering - Introduction to the programme

Prof. Dr. Jürgen Wilde

15 October 2019

UNI FREIBURG

The technology

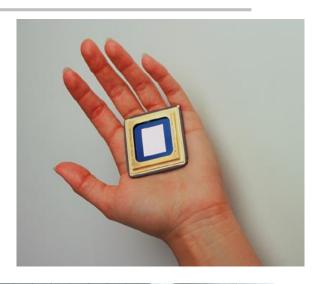
A macrosystem

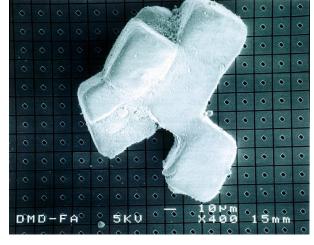
The Airbus A380

- Approximately 1 Million single parts!
 - One Wing: 32,000 parts
- Costs: \$ 275 Millions
 - Average per single part \$ 275
- High effort for single part fabrication

SAIRBUS

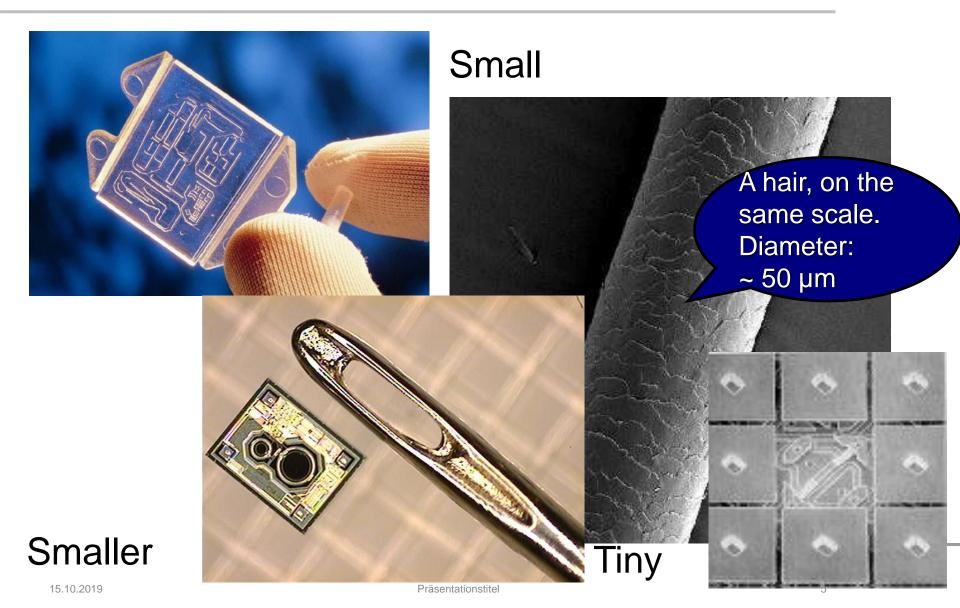
Can you imagine such a system with 2 Million parts?

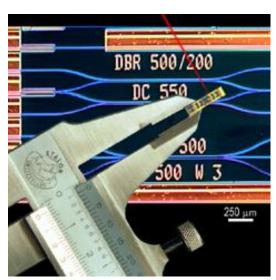

A microsystem

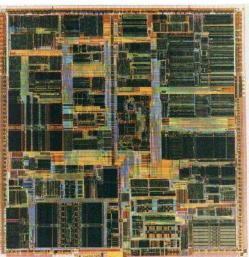

The DMD

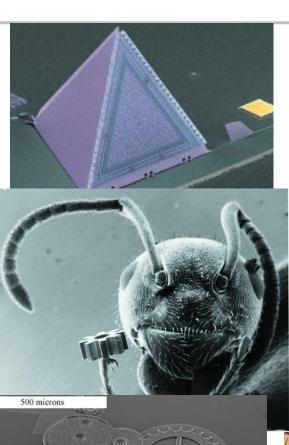
- Digital Micro-mirror Device
- 1.6 cm x 1.6 cm
- 508,800 mirrors 17 μm x 24 μm
- ~ 2.2 million parts
- Price: ~ € 2 000
- Price / part: < 0.1 Cent
- Mass fabrications

Microsystems


- Many functions
- Small volume




Microsystems are small



A huge variety in microsystems

Microsystems are everywhere

Medicine

- Minimally-invasive surgery
- Diagnostics

Communications

- Fiber optics
- Mobile phones

Consumer

- Autonomous networks
- Sensors

Industry

- Process management
- Instrumentation

Automobile

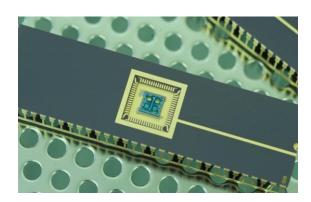
- Rotatio rate sensors
- Airbags

The career

Studies: technical skills

Educational goal:

To graduate students who can go from idea to product


The required skills: The challenge

- starts now Problem definition
- Solutions & evaluation

Design & development

- **Fabrication**
- Characterization & optimization
- Packaging
- System testing & qualification
- Transfer to production

Studies: Non-technical skills

- Technical excellence is a given...
- ... but graduates also need:
 - Ability to work in a team
 - Social competence
 - Creativity
 - Openness to new ideas
 - Self-confidence
 - Communication skills
 - Entrepreneurial thinking
 - Ability to motivate, oneself and others
 - Leadership capabilities

Where do I go with my degree?

Microsystems engineers become:

- Entrepreneurs, technicians, engineers, group leaders,

managers, CEOs, astronauts,...

Potential employers:

- Large & small companies of all types
- Startups and spin-offs

What do employers want?

- Potential for development
- Ability to learn
- Communications ability (in English and German!)
- Experience, experience, experience
- Particular skills? Not so much...

The department

Faculty of Engineering

- Faculty in operation since 1995
- Department of Computer Science (IIF)
 - 19 professors / ~ 820 students
- Department of Microsystems Engineering (IMTEK)
 - 22 professors / ~ 785 students
- Department of Sustainable Systems Engineering (INATECH)
 - 7 professors / ~ 158 students

IMTEK-Professors

IMTEK Laboratories

- MEMS Applications
 - Prof. Dr. Roland Zengerle
- Assembly and Packaging Technology Prof. Dr. Jürgen Wilde
- Bio- and Nano-PhotonicsProf. Dr. Alexander Rohrbach
- Biomedical Microtechnology Prof. Dr. Thomas Stieglitz
- Biomicrotechnology Prof. Dr. Ulrich Egert
- Chemistry and Physics of Interfaces
 Prof. Dr. Jürgen Rühe
- Design of MicrosystemsProf. Dr. Peter Woias
- Electrical Instrumentation
 Prof. Dr. Leonhard Michael Reindl
- Gas SensorsProf. Dr. Juergen Woellenstein
- Materials Process Technology
 Prof. Dr. Thomas Hanemann
- Micro- and Material Mechanics
- Prof. Dr. Christoph Eberl

Microactuators

Prof. Dr. Ulrike Wallrabe

Microelectronics

Prof. Dr. Yiannos Manoli

Micro-optics

Prof. Dr. Hans Zappe

Microsystems Materials

Prof. Dr. Oliver Paul

Nanotechnology

Prof. Dr. Margit Zacharias

Optical Systems

Prof. Dr. Carsten Buse

Sensors

Prof. Dr. Gerald Urban

Simulation

Prof. Dr. Lars Pastewka

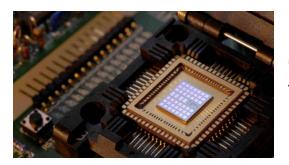
Smart Systems Integration

Prof. Dr. Alfons Dehé

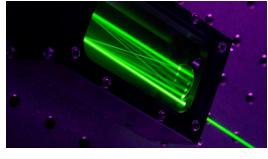
Systems Theory

Prof. Dr. Moritz Diehl

Process Technology


Prof. Dr. Bastian E. Rapp

UNI



Our foci in research and teaching

- Circuits and Systems
- Design and Simulation
- Biomedical engineering
- Lab-on-a-chip
- Materials
- Photonics
- Process Engineering
- Sensors and Actuators

Chip integrated fuel cell

Optical gas sensor

Electrode array for the brain

The curriculum

15.10.2019 Präsentationstitel 17

Microsystems Engg. education

General principles:

- Interdisciplinary basic education in electrical engineering, physics, chemistry, materials science, technology
- Hands-on education lab classes in the clean room, electronics and chemistry lab classes, system design project...
- Systems and application oriented education with a broad, encompassing view
- Fit for business non-technical education: project management, IP, business plans, company financing...

Microsystems Engg. education

Structural principles of all study programs at the faculty

- 30 ECTS per semester
- 30 hours work load per credit point
- All programs are organized in modules
- A module can consist of one or several courses
- Performance evaluation after the semester

Modules in the study program

Module Components

- Lectures German: Vorlesung (V)
- Exercises German: Übung (Ü)
- Laboratories German: Praktikum (Pr) oder Praktische Übung (PrÜ)

Pass/fail assessments ("Studienleistungen")

- Exercises, reports, mid-term exams...
- Are not part of your final grade, but may be part of a module (for example the exercise sheets)
- Are not always graded (only "pass" or "fail")

Graded assessments ("Prüfungsleistungen")

- Written or oral exams, reports, ...
- Are always graded

MSc. program in Microsystems

Scope of MSE

- Feasible in 4 semesters
 (average duration 6 semesters)
- 120 ECTS

Components

- Mandatory courses
- Concentrations (elective courses)
- MSc thesis

Educational goals

- Research qualification
- Laboratory techniques
- Presentation & reporting capability

MSE – Mandatory modules

Module	Semester	Туре	ECTS
Advanced Microsystems Engineering	All modules to be completed		53
Microelectronics	1	VÜ	5
Micro-mechanics	1	VÜ	5
MST Design Lab I	1	Р	3
Micro-optics	1	VÜ	5
Sensors	1	V+P	5
MST Technologies and Processes	1	VÜ	5
Signal Processing	2	VÜ	5
Assembly and Packaging Tech.	2	VÜ	5
Biomedical Microsystems	2	VÜ	5
Micro-actuators	2	VÜ	5
Micro-fluidics	2	VÜ	5
Mathematics	This module to be completed		5
Probability and Statistics	1	VÜ	5

MSE – Elective modules

Module	Semester	Туре	ECTS
2 concentration areas to be chosen. At least 9 ECTS in each of them. Total ECTS required 32			
Circuits and Systems	2-4		
Design and Simulation	2-4		
Life Sciences: Biomedical Engineering	2-4		
Life Sciences: Lab-on-a-chip	2-4		
Materials	2-4		
MEMS Processing	2-4		
Photonics	2-4		
Sensors and Actuators	2-4		
Personal Profile	2-4		
Master's thesis (mandatory)	3-4		30
Total	1-4		120

15.10.2019 Präsentationstitel

Circuits and systems	Design and Simulation
Energy Storage and Conversion using Fuel Cells	Embedded Control Laboratory
Mixed Signal CMOS Circuit Design	Flight Control Laboratory
Advanced embedded Systems Laboratory	Modelling and System Identification
Advanced Laboratory in Microcontroller	Numerical Optimisation
Power Electronics: Devices and Concepts	Numerical Optimisation Software Project
Magnetic Microsystems	Numerical Optimal Control in Science and Engg.
Embedded Control Project	Optimal Control and Estimation
Microcontroller Techniques	Optimal and Model Predictive Control
Power Electronic Circuits and Devices	Race Car Control Lab
RF- and Microwave Devices and Circuits	VLSI System Design
RF- and Microwave Systems Design course	Wind Energy Systems
Systems Theory and automatic Control II	
Reliability Engineering	

Implant Manufacturing Technologies

Microsystems technology in Medicine

Neurophysiology - Laboratory

Neuroscience for Engineers

Nanobiotechnology

Neuroprosthetics

Signal processing and analysis in brain signals

Life Sciences: Biomedical Engg.	Life Sciences: Lab-on-a-chip
Analyse von Life Science Hochdurchsatzdaten mit	Bioactive Polymer Surfaces
Galaxy	Biofuel Cells and Bioelectrochemical Systems
Selected Problems in Biosignal Processing	BioMEMS
Biofunctional Materials - for medical microsystems and healthcare	Biotechnology for Engineers I: Introduction, Molecular- and Microbiology
Biologie für Ingenieure	Biotechnology for Engineers II
Bionic Sensors - Laboratory	Interfaces for Bioanalytical Systems
Biomedical Instrumentation I	Introduction to data driven life sciences
Biomedical Instrumentation II	Basics in Molecular Biology for Bioanalytical
Biomedical Instrumentation - Laboratory	Systems
Biophysics of the cell	Microfluidics II: Miniaturize, automate and
Ethical Aspects of Neurotechnology	parallelize biochemical analysis
Fundamentals of electrical stimulation	Surface Analysis
Introduction to physiological Control Systems	

Nanomaterials

Nano - Laboratory

Surface Analysis

Dynamics of Materials

Particle Methods in Engineering

Polymer Chemistry for Engineers Polymers in Membrane Technology From Microsystems to the Nanoworld

Materials	MEMS Processing
Bioactive Polymer Surfaces	Lithography
Bioactive Polymer Surfaces with seminar	Electrochemical production technologies
Bioinspired functional materials	CMOS-Integrated Microsystems
Computational physics: materials science	Advanced Assembly and Packaging Technology
Electrochemical Energy Applications: Batteries	Lithography
Semiconductor Technology and Devices	Advanced Silicon Technology
Ceramic Materials for microsystems	Micro-Acoustical Transducers
Ceramic technology in microsystems	Microstructured Polymer Components
Physics of Failure	Mold Flow Simulation for Replication Processes
Contact, Adhesion, Friction	Nanotechnology
Continuum Mechanics I with exercises	Advanced Engineering
Continuum Mechanics II with exercises	Surface Analysis Laboratory
Mechanical Properties and Degradation	Silicon-based Neural Technology
Mechanisms	Surface coating Techniques
Molecular Statics and Dynamics	

Photonics	Sensors and Actuators
Advanced Topics in Micro-Optics	Thin Film Analyses and Nanoscale Measurement
Lasers	Technologies
Basic Optics Lab	Bionic Sensors
Basic and Advanced Optics Lab	Wireless Sensor Networks
Optical Materials	Wireless Sensor Systems
Optical Properties of Micro and Nano Structures	Disposable sensors
Optical Trapping and Particle Tracking Optical MEMS	Electrochemical energy applications: Li-ion batteries and fuel cells
Optical Measurement Techniques	Energy harvesting
Optical Micro-Sensors	Gas Sensors
Optoelectronics	Power Electronics for E-Mobility
Photonic Microscopy	Electrochemical Methods for Engineers
Photovoltaic Energy Conversion for engineers	Mikroaktorik für Mikrosystemtechniker
Photovoltaic Energy Conversion for engineers II	Microacoustics
Spektroskopische Methoden	Piezoelectric and dieelectric transducers
Wave Optics	Quantum mechanics for engineers
	Electronics Signal Processing for Sensors and Actuators
	Thermoelektrik
	Compound semiconductor devices

MSE courses, first semester

Mon	Tue	Wed	Thu	Fri
	08:00 - 10:00 Probability and Statistics lecture Room 101 01 009/013	08:00-10:00 Probability and Statistics, tutorial Room 101 01 009/013	8:00 – 10:00 Microelectronics tutorial Room 082 00 006	
10:00 – 12:00 Micromechanics Lecture Room 101 00 026		10:00-12:00 Microelectronics lecture Room 082 00 006	10:00 - 12:00 Micro-optics lecture Room 101 00 010/014	10:00-12:00 Micromechanics tutorial Room 101 01 009/013
	13:00 – 14:00 MST Technologies and Processes, tutorial Room 101 00 026		13:00 - 14:00 Sensors Lecture Room 101 01-009/013	12:00 - 14:00 MST Design Lab I Room 082 00 006
	14:00 – 16:00 Sensors Lecture Room 101 01-009/013		14:00 – 16:00 MST Technologies and Processes, lecture Room 101 00 026	14:00 – 16:00 Micro-optics tutorial Room 051 00 034 Room 051 00 006
	16:00 – 18:00 MST Design Lab I Lecture Room 082 00 006		16:00 – 18:00 Sensors Lab, group 1 Room 078 00 035	16:00 – 18:00 Sensors Lab, group 4 Room 078 00 035
			18:00 – 20:00 Sensors Lab, group 2 Room 078 00 035	

UNI FREIBUR

Plagiarism is:

 Using someone else's texts, pictures, reports, data, solutions, whatever....

... without giving the source

Sources include:

- Books, the internet, colleagues, ...

To make it clear:

- Plagiarism is illegal

The simple "if...then" loops:

- If you plagiarize...(once)
- ... then you fail
- If you plagiarize repeatedly (=twice)
- ... then your academic career is over.

Some thoughts to share...

A Master program in Germany

- You have to organize your courses and your life
- Make sure to observe the deadlines for course and exam registration
- We challenge you from the first day on to assess given knowledge...
- ...and to transfer given knowledge from one course to another
- We will show you many aspects of microsystems related disciplines and applications to broaden your knowledge and increase the oppurtunites for an exciting career.

That means for you...

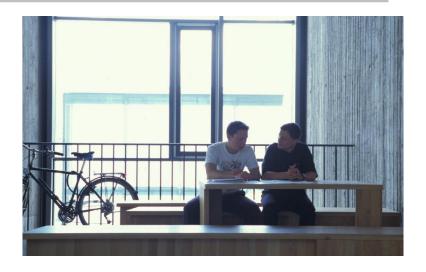
- YOU have to take the initiative to ASK, ASK and read until you understand
- WE give you the overview, YOU have to learn the details

The art of living

Enjoy being a student!

- It is helpful to
- Structure your day
- Have unstructured free time
- Meet colleagues
- Keep up with your work
- Turn off on occasion

Don't forget


- Family
- Friends
- Sports
- Culture
- Autumn leaves...

- Buy textbooks
- Contact your mentor
- Form study groups
- Poke around in the laboratories
- Find an MSc thesis advisor early
- Stay registered
- Get enough sleep
 - But not in my class, please

Every student has a faculty mentor

- A professor as a contact person
- Assigned by the Dean of Studies

Student's contact for:

- Problems, questions, clarifications, job searches, recommendations, or just general advising

After graduation

15.10.2019 Präsentationstitel 34

Apply for a job

In Industry

- Find out what you like during your MSc program
- Use job portals and company websites to monitor the market
- Visit career workshops to gather tips how to apply
- Go to recruiting fairs

Phd. as research assistant

- Perform a research project (on your own)
- Look for an open position
- Apply
- Get paid for the PhD project
- Overtake responsibility as project assistant
- Support your professor with respect to educational tasks
- Duration: 3-5 years

Contact persons I

- Dean of studies: Prof. Moritz Diehl
 - Moritz.diehl@imtek.de
 - 203 67852
- Program coordinator: Ursula Epe
 - studienkoordination@tf.uni-freiburg.de
 - 203 8340

- studienberatung@imtek.de
- Dr. Andreas Greiner
 - 203 67479
- Dr. Oswald Prucker
 - 203 7164

Contact persons II

Examination office

- Anne-Julchen Müller
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083

- Susanne Storck
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083

Advising@Service Center Studium

International Admissions and Services
(IAS) and Central Academic Advising
(ZSB) at Service Center Studium is your
first resort for all information and advice
concerning your studies

at Sedanstr. 6 (b/n library and theatre)

ZSB / IAS @ SCS

Information

Clearing / first information

- Where to go to ...?
- Whom to talk to if...?
- How do I…?
- daily info desk

Hotline 0761 / 203-4246

Advising

...on any topic concerning your studies

- confidential
- impartial
- professional
- open and scheduled consultation hours

Workshops

Smalls groups (mostly in German), topics such as:

- Doubts / hard choices
- Dealing with (study) stress
- Time and selfmanagement
- Masters degree or job search?

www.zsb.uni-freiburg.de www.ias.uni-freiburg.de

Thank you very much for your attention!

15.10.2019 Präsentationstitel 41