

Msc. Microsystems Engineering -Introduction to the programme Prof. Dr. Jürgen Wilde

30 October 2020

Albert-Ludwigs-Universität Freiburg

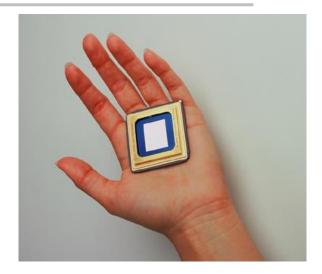
FREIBURG

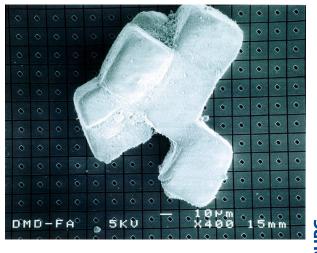
The technology

The Airbus A380

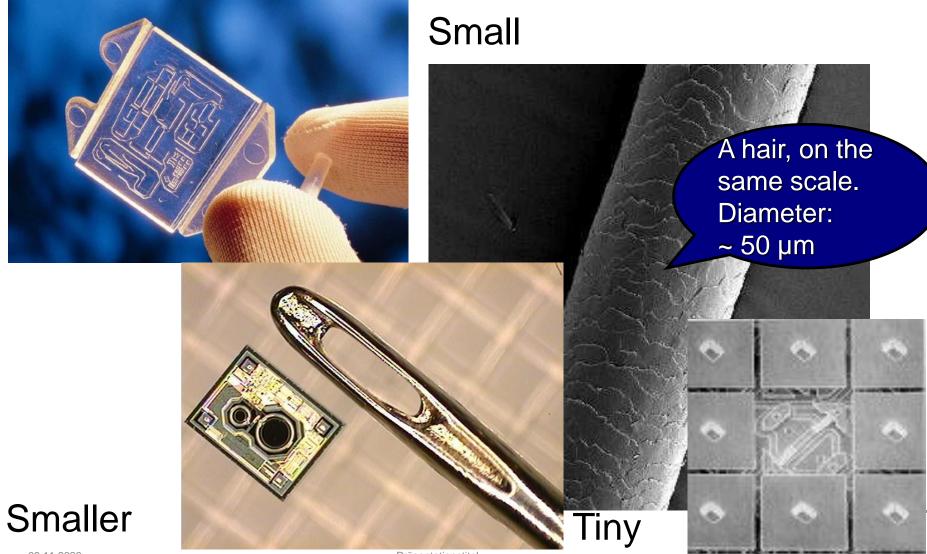
- Approximately 1 Million single parts!
 - One Wing: 32,000 parts
- Costs: \$ 275 Millions
 - Average per single part \$ 275
- High effort for single part fabrication

Can you imagine such a system with 2 Million parts?

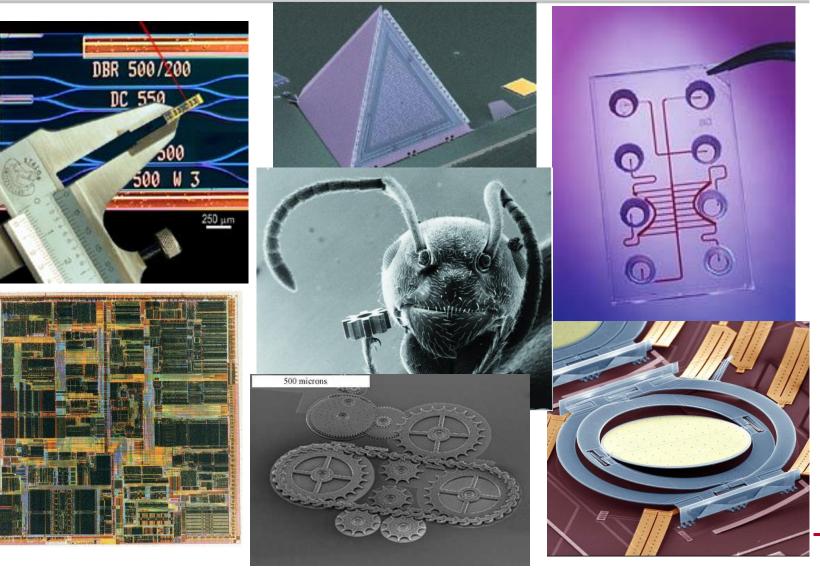



The DMD

- Digital Micro-mirror Device
- 1.6 cm x 1.6 cm
- 508,800 mirrors 17 μm x 24 μm
- ~ 2.2 million parts
- Price: ~ € 2 000
- Price / part: < 0.1 Cent
- Mass fabrications


Microsystems

- Many functions
- Small volume



03.11.2020

UNI FREIBURG

- Medicine
 - Minimally-invasive surgery
 - Diagnostics

Communications

- Fiber optics
- Mobile phones

Consumer

- Autonomous networks
- Sensors

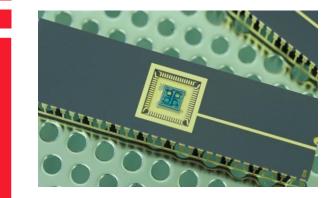
Industry

- Process management
- Instrumentation

Automobile

- Rotatio rate sensors
- Airbags

The career


Educational goal:

- To graduate students who can go from idea to product
- The required skills: The challenge
 - Problem definition
 - Solutions & evaluation

Design & development

- Fabrication
- Characterization & optimization
- Packaging
- System testing & qualification
- Transfer to production
- 03.11.2020- Marketing

starts now

- Technical excellence is a given...
 - ... but graduates also need:
 - Ability to work in a team
 - Social competence
 - Creativity
 - Openness to new ideas
 - Self-confidence
 - Communication skills
 - Entrepreneurial thinking
 - Ability to motivate, oneself and others
 - Leadership capabilities

Where do I go with my degree?

Microsystems engineers become:

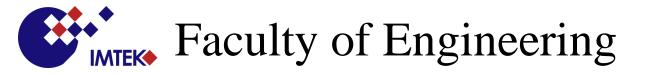
 Entrepreneurs, technicians, engineers, group leaders, managers, CEOs, astronauts,...

Potential employers:

- Large & small companies of all types
- Startups and spin-offs

What do employers want?

- Potential for development
- Ability to learn
- Communications ability (in English and German!)
- Experience, experience, experience
- Particular skills? Not so much...


The department

03.11.2020

Präsentationstitel

12

- ► Faculty in operation since 1995
- Department of Computer Science (IIF)
 - 19 professors / ~ 840 students
- Department of Microsystems Engineering (IMTEK)
 - 22 professors / ~ 830 students
- Department of Sustainable Systems Engineering (INATECH)
 - 7 professors / ~ 250 students

- MEMS Applications
 Prof. Dr. Roland Zengerle
- Assembly and Packaging Technology Prof. Dr. Jürgen Wilde
- Bio- and Nano-Photonics
 Prof. Dr. Alexander Rohrbach
- Biomedical Microtechnology
 Prof. Dr. Thomas Stieglitz
- Biomicrotechnology
 Prof. Dr. Ulrich Egert
- Chemistry and Physics of Interfaces Prof. Dr. Jürgen Rühe
- Design of Microsystems Prof. Dr. Peter Woias
- Electrical Instrumentation
 Prof. Dr. Leonhard Michael Reindl
- Gas Sensors
 Prof. Dr. Juergen Woellenstein
- Materials Process Technology Prof. Dr. Thomas Hanemann
- Micro- and Material Mechanics
- Prof. Dr. Christoph Eberl

Microactuators Prof. Dr. Ulrike Wallrabe **Microelectronics** Prof. Dr. Yiannos Manoli **Micro-optics Prof. Dr. Hans Zappe Microsystems Materials** Prof. Dr. Oliver Paul Nanotechnology **Prof. Dr. Margit Zacharias Optical Systems** Prof. Dr. Carsten Buse Sensors Prof. Dr. Gerald Urban Simulation Prof. Dr. Lars Pastewka **Smart Systems Integration** Prof. Dr. Alfons Dehé Systems Theory Prof. Dr. Moritz Diehl Process Technology Prof. Dr. Bastian E. Rapp

UNI FREIBURG

The curriculum

- MSc. Program = 120 ECTS
- ~ 30 ECTS per semester
- 1 ECTS = 30 hours work load
- Mandatory courses are offered every other semester.
- Exams are offered every semester.
- The exam regulations stipulate *which* courses are to be completed to get the degree, but you can decide *when* you want to take which course and exam.
- It is allowed to study more than 4 semesters.

Modules in the study program

- All programs are organized in modules.
- A module consists of one or several courses and course work.
- Module Components
 - Lectures German: Vorlesung (V)
 - Exercises German: Übung (Ü)
 - Laboratories German: Praktikum (Pr) oder Praktische Übung (PrÜ)
 - Seminars German: Seminar (S)

- Non-graded course work ("Studienleistungen", SL)
 - Exercises, reports, mid-term exams...
 - Are not part of your final grade, but may be part of a module (for example weekly exercise sheets)
 - May be graded, or only "pass" or "fail"
 - Unlimited number of attempts

Graded course work ("Prüfungsleistungen", PL)

- Written or oral exams, reports, presentations,...
- Are always graded and count into your final grade
- Limited number of attempts

Module	Туре	Exam	ECTS	Sem
Microelectronics	Le+E	Written exam	5	1
Micro-mechanics	Le+E	Written exam	5	1
MST Design Lab I	La	?	3	1
Micro-optics	Le+E	Written exam	5	1
Sensors	Le+La	Written exam	5	1
MST Technologies and Processes	Le+E	Written exam	5	1
Probability and Statistics	Le+E	Written exam	5	1

Le = Lecture, E = Exercise, La = Lab course

Module	Туре	Exam	ECTS	Sem
Signal Processing	Le+E	Written exam	5	2
Assembly and Packaging Tech.	Le+E	Written exam	5	2
Biomedical Microsystems	Le+E	Written exam	5	2
Micro-actuators	Le+E	Written exam	5	2
Micro-fluidics	Le+E	Written exam	5	2
Probability and Statistics	Le+E	Written exam	5	2
Master thesis		Thesis and pres.	30	4
Total Mandatory Modules			58	

Le = Lecture, E = Exercise, La = Lab course

Choose 2 areas, minimum 9 ECTS max. 23 ECTS in each of them.

Concentration areas	ECTS
Circuits and Systems	9-23
Design and Simulation	9-23
Life Sciences: Biomedical Engineering	9-23
Life Sciences: Lab-on-a-chip	9-23
Materials	9-23
MEMS Processing	9-23
Photonics	9-23
Sensors and Actuators	9-23
Personal Profile	9-23
Total Elective Modules	32

Circuits and systems

Energy Storage and Conversion using Fuel Cells Mixed Signal CMOS Circuit Design Advanced embedded Systems Laboratory Advanced Laboratory in Microcontroller Power Electronics: Devices and Concepts Magnetic Microsystems Embedded Control Project Microcontroller Techniques Power Electronic Circuits and Devices RF- and Microwave Devices and Circuits RF- and Microwave Systems Design course Systems Theory and automatic Control II Reliability Engineering

Design and Simulation

Embedded Control Laboratory Flight Control Laboratory Modelling and System Identification Numerical Optimisation Numerical Optimisation Software Project Numerical Optimal Control in Science and Engg. Optimal Control and Estimation Optimal and Model Predictive Control Race Car Control Lab VLSI System Design Wind Energy Systems

Life Sciences: Biomedical Engg.	Life Sciences: Lab-on-a-chip
Analyse von Life Science Hochdurchsatzdaten mit	Bioactive Polymer Surfaces
Galaxy	Biofuel Cells and Bioelectrochemical Systems
Selected Problems in Biosignal Processing	BioMEMS
Biofunctional Materials - for medical microsystems and healthcare	Biotechnology for Engineers I: Introduction, Molecular- and Microbiology
Biologie für Ingenieure	Biotechnology for Engineers II
Bionic Sensors - Laboratory	Interfaces for Bioanalytical Systems
Biomedical Instrumentation I	Introduction to data driven life sciences
Biomedical Instrumentation II	Basics in Molecular Biology for Bioanalytical
Biomedical Instrumentation - Laboratory	Systems
Biophysics of the cell	Microfluidics II: Miniaturize, automate and
Ethical Aspects of Neurotechnology	parallelize biochemical analysis
Fundamentals of electrical stimulation	Surface Analysis
Introduction to physiological Control Systems	
Implant Manufacturing Technologies	
Signal processing and analysis in brain signals	
Microsystems technology in Medicine	
Nanobiotechnology	
Neurophysiology - Laboratory	
Neuroprosthetics	BURG
Neuroscience for Engineers	
	FRC REAL

Materials

Bioactive Polymer Surfaces Bioactive Polymer Surfaces with seminar Bioinspired functional materials Computational physics: materials science **Electrochemical Energy Applications: Batteries** Semiconductor Technology and Devices Ceramic Materials for microsystems Ceramic technology in microsystems Physics of Failure Contact, Adhesion, Friction Continuum Mechanics I with exercises Continuum Mechanics II with exercises Mechanical Properties and Degradation **Mechanisms** Molecular Statics and Dynamics **Nanomaterials** Nano - Laboratory Particle Methods in Engineering Surface Analysis **Polymer Chemistry for Engineers** Polymers in Membrane Technology From Microsystems to the Nanoworld **Dynamics of Materials**

MEMS Processing

Lithography Electrochemical production technologies CMOS-Integrated Microsystems Advanced Assembly and Packaging Technology Lithography Advanced Silicon Technology Micro-Acoustical Transducers Microstructured Polymer Components Mold Flow Simulation for Replication Processes Nanotechnology Advanced Engineering Surface Analysis Laboratory Silicon-based Neural Technology Surface coating Techniques

Photonics Sensors and Actuators Advanced Topics in Micro-Optics Thin Film Analyses and Nanoscale Measurement Technologies Lasers **Bionic Sensors Basic Optics Lab** Wireless Sensor Networks **Basic and Advanced Optics Lab** Wireless Sensor Systems **Optical Materials Disposable sensors Optical Properties of Micro and Nano Structures** Electrochemical energy applications: Li-ion **Optical Trapping and Particle Tracking** batteries and fuel cells **Optical MEMS** Energy harvesting **Optical Measurement Techniques** Gas Sensors **Optical Micro-Sensors** Power Electronics for E-Mobility **Optoelectronics Electrochemical Methods for Engineers** Photonic Microscopy Mikroaktorik für Mikrosystemtechniker Photovoltaic Energy Conversion for engineers **Microacoustics** Photovoltaic Energy Conversion for engineers II Piezoelectric and dieelectric transducers Spektroskopische Methoden Quantum mechanics for engineers Wave Optics **Electronics Signal Processing for Sensors and** Actuators Thermoelektrik Compound semiconductor devices

- WS 20/21: All courses (except for lab courses) can be taken online
- Some lecturers will offer on-campus sessions in addition to the online offer
- Online lectures: Either livestream or recorded lectures
- Online exercises: Students will send or upload the exercises they solved. Lecturer will give individual feedback and/or offer Q&A sessions or online forums
- More detailed information will be provided by each lecturer for his/her course by email or via ILIAS
- Written exams can only be taken on-campus

Faculty of Engineering:

https://www.tf.uni-freiburg.de/en/corona

University:

https://www.studium.uni-

freiburg.de/en?set_language=en

Student Services (SWFR):

https://www.swfr.de/en/corona-faqs/

MSE courses, first semester

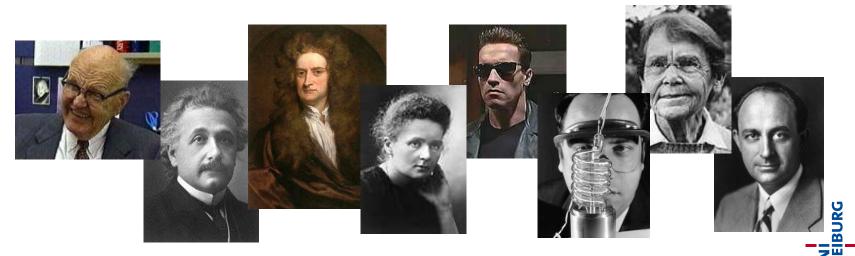
Mon	Tue	Wed	Thu	Fri
		8-10 Probability & Stat. Lecture 051-03-026	8-10 Micro-electronics Exercises 101 00 036	
10-12 Micromechanics Lecture <mark>online</mark>	10-12 Micro-optics Lecture 101 00 036	10-12 Micro-electronics Lecture 101 00 036	10-12 Probability & Stat. Exercises 051-03-026	10-12 Micromechanics Exercises 101 00 036
	13-14 MST Technologies & Processes Exercises		13-14 Sensors Lecture Online	12-14 MST Design Lab) Lab course 082 00 006
	14-16 Sensors Lecture <mark>Online</mark>		14-16 MST Technologies & Processes, lecture	14-16 Micro-optics Exercises
	16-18 MST Design Lab I Lecture 051 03 026		16-18 Sensors Lab 078 00 035	16-18 Sensors Lab 078 00 035
			18-20 Sensors Lab 078 00 035	

UNI FREIBURG

In addition to registering for a module, you need to register for every exam you want to take:

https://www.tf.uni-freiburg.de/en/studies-and-teaching/a-to-zstudy-faq/de-registration-of-exams

- If failed, you can repeat every exam once. Two exams can be repeated twice.
- If you fail an exam, you will automatically be registered for the retake in the following semester.
- You can only withdraw from an exam if you are ill or if there is an emergency in your family. <u>https://www.tf.uni-freiburg.de/en/studies-and-teaching/a-to-z-</u> <u>study-faq/withdrawl-from-exams</u>
- For more details, make sure to read the <u>exam regulations</u>.


- Plagiarism is:
 - Using someone else's texts, pictures, reports, data, solutions, whatever....
 - ... without giving the source
- Sources include:
 - Books, the internet, colleagues, .
- To make it clear:
 - Plagiarism is illegal
- The simple "if...then" loops:
 - If you plagiarize...(once)
 - ... then you fail
 - If you plagiarize repeatedly (=twice)
 - ... then your academic career is over.

- Every student has a faculty mentor
 - A professor as a contact person
 - Assigned by the Dean of Studies
- Student's contact for:
 - Problems, questions, clarifications, job searches, recommendations, or just general advising

33

After graduation

In Industry

- Find out what you like during your MSc program
- Use job portals and company websites to monitor the market
- Visit career workshops to gather tips how to apply
- Go to recruiting fairs

- At the university:
 - Perform a research project (on your own)
 - Look for an open position
 - Apply
 - Get paid for the PhD project
 - Overtake responsibility as project assistant
 - Support your professor with respect to educational tasks
 - Duration: 3-5 years

- Dean of studies: Prof. Jürgen Wilde
 - juergen.wilde@imtek.de
 - 203 7291
- **Program coordinator:** Ursula Epe
 - <u>studiengangkoordination.mst@imtek.uni-freiburg.de</u>
 - 203 97940
- Student advisers:
 - <u>studienberatung@imtek.de</u>
 - Dr. Jochen Kieninger
 - 203 7265
 - Dr. Oswald Prucker
 - 203 7164

03.11.2020

Examination office

- Anne-Julchen Müller
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083
- Susanne Storck
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083

Thank you very much for your attention !

