

Msc. Microsystems Engineering - Introduction to the programme

Prof. Dr.-Ing. Jürgen Wilde

12th October 2022

The technology

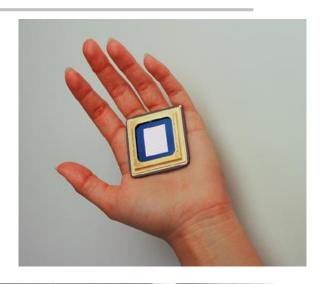
A macro-system

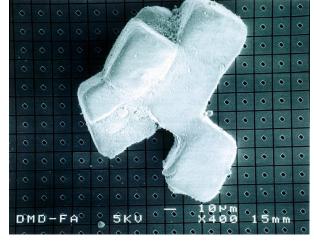
The Airbus A380

- Approximately 1 Million single parts!
 - One Wing: 32,000 parts
- Costs: \$ 275 Millions
 - Average per single part \$ 275
- High effort for single part fabrication

AIRBUS

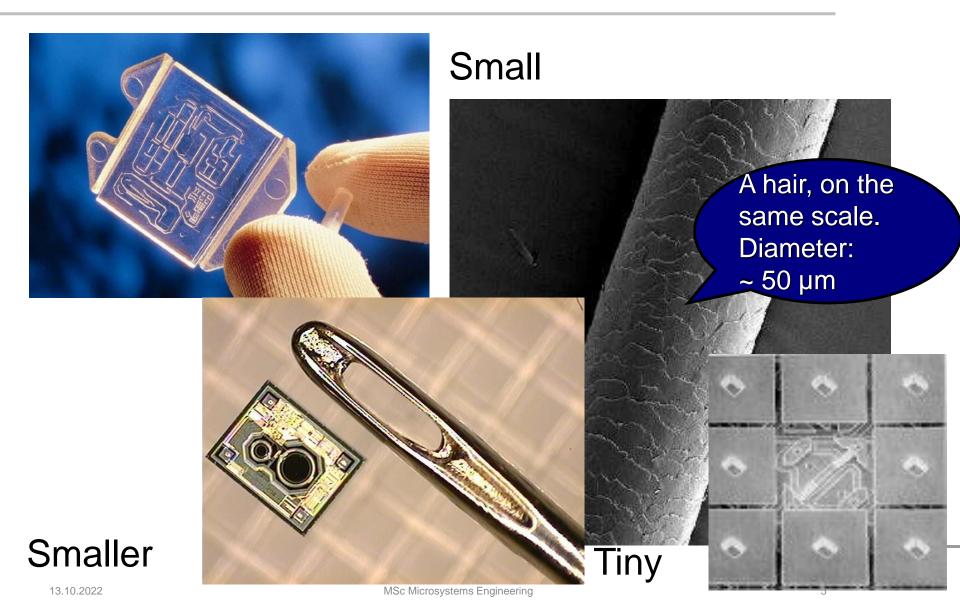
Can you imagine such a system with 2 Million parts?

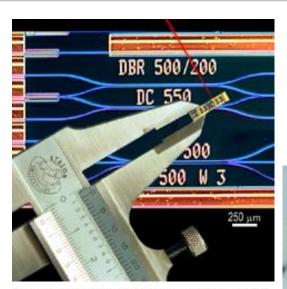

A microsystem

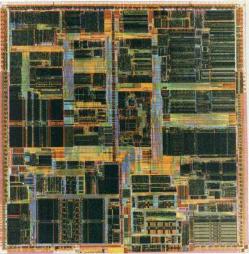

The DMD

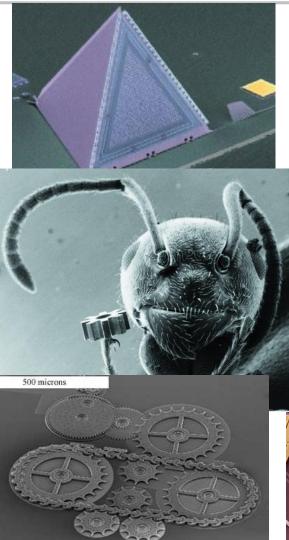
- Digital Micro-mirror Device
- 1.6 cm x 1.6 cm
- 508,800 mirrors 17 μm x 24 μm
- ~ 2.2 million parts
- Price: ~ € 2 000
- Price / part: < 0.1 Cent
- Mass fabrications

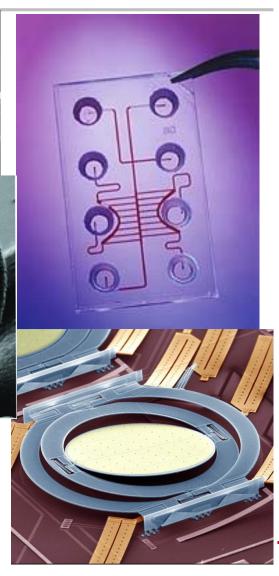
Microsystems


- Many functions
- Small volume




Microsystems are small





A huge variety in microsystems

Microsystems are everywhere

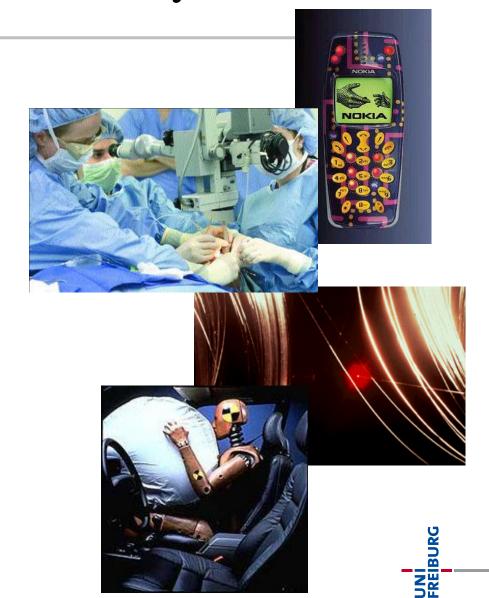
Medicine

- Minimally-invasive surgery
- Diagnostics

Communications

- Fiber optics
- Mobile phones

Consumer


- Autonomous networks
- Sensors

Industry

- Process management
- Instrumentation

Automobile

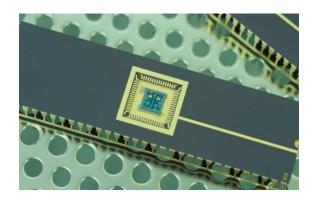
- Gyroscope
- Airbags

The career

Studies: technical skills

Educational goal:

 To graduate students who can go from idea to product


The required skills: The challenge

- Problem definition starts now
- Solutions & evaluation

Design & development

- Fabrication
- Characterization & optimization
- Packaging
- System testing & qualification
- Transfer to production

Studies: Non-technical skills

- Technical excellence is a given...
- ... but graduates also need:
 - Ability to work in a team
 - Social competence
 - Creativity
 - Openness to new ideas
 - Self-confidence
 - Communication skills
 - Entrepreneurial thinking
 - Ability to motivate, oneself and others
 - Leadership capabilities

Where can I go with my degree?

Microsystems engineers become:

Entrepreneurs, technicians, engineers, group leaders,

managers, CEOs, astronauts,...

Potential employers:

- Large & small companies of all types
- Startups and spin-offs

What do employers want?

- Potential for development
- Ability to learn
- Communications ability (in English and German!)
- Experience, experience, experience
- Particular skills? Not so much…

The department

Faculty of Engineering

- Faculty in operation since 1995
- Department of Computer Science (IIF)
 - 19 professors / ~ 840 students
- Department of Microsystems Engineering (IMTEK)
 - 22 professors / ~ 830 students
- Department of Sustainable Systems Engineering (INATECH)
 - 7 professors / ~ 250 students

IMTEK-Professors

IMTEK Laboratories

MEMS	Applications
------	---------------------

Prof. Dr. Roland Zengerle

Assembly and Packaging Technology
 Prof. Dr. Jürgen Wilde

Bio- and Nano-Photonics

Prof. Dr. Alexander Rohrbach

Biomedical Microtechnology

Prof. Dr. Thomas Stieglitz

Biomicrotechnology

Prof. Dr. Ulrich Egert

Chemistry and Physics of Interfaces
 Prof. Dr. Jürgen Rühe

Design of Microsystems

Prof. Dr. Peter Woias

Electr. Instrumentation & Embedded Sys. Prof. Dr. Stefan Rupitsch

Gas Sensors

Prof. Dr. Juergen Woellenstein

Materials Process Technology

Prof. Dr. Thomas Hanemann

Micro- and Material MechanicsProf. Dr. Christoph Eberl

Microactuators

Prof. Dr. Ulrike Wallrabe

Microelectronics

Prof. Dr. Matthias Kuhl

Micro-optics

Prof. Dr. Hans Zappe

Microsystems Materials

Prof. Dr. Oliver Paul

Nanotechnology

Prof. Dr. Margit Zacharias

Optical Systems

Prof. Dr. Carsten Buse

Sensors

Prof. Dr. Gerald Urban

Simulation

Prof. Dr. Lars Pastewka

Smart Systems Integration

Prof. Dr. Alfons Dehé

Systems Theory

Prof. Dr. Moritz Diehl

Process Technology

Prof. Dr. Bastian E. Rapp

UNI FREIBURG

The curriculum

Structural principles

- MSc. Program = 120 ECTS
- ~ 30 ECTS per semester
- 1 ECTS = 30 hours work load
- Mandatory courses are offered every other semester.

- Exams are offered every semester.
- The exam regulations stipulate which courses are to be completed to get the degree, but you can decide when you want to take the respective course and exam.
- It is allowed to study more than 4 semesters.

Modules in the study program

- All programs are organized in modules.
- A module consists of one or several courses and course work.

Module Components

- Lectures German: Vorlesung (V)
- Exercises German: Übung (Ü)
- Laboratories German: Praktikum
 (Pr) oder Praktische Übung (PrÜ)
- Seminars German: Seminar (S)

Course work

Non-graded course work ("Studienleistungen", SL)

- Exercises, reports, mid-term exams...
- Are not part of your final grade, but may be part of a module (for example weekly exercise sheets)
- May be graded, or judged only as "pass" or "fail"
- Unlimited number of attempts

Graded course work ("Prüfungsleistungen", PL)

- Written or oral exams, reports, presentations,...
- Are always graded
- Count in your final grade
- Limited number of attempts, normally only 2

Mandatory modules in MSc MSE

Module	Туре	Exam	ECTS	Sem
Microelectronics	Le+E	Written exam	6	1
Micro-mechanics	Le+E	Written exam	6	1
MST Design Laboratory I for Microsystems Engineering	La	Studienleistung	6	1
MST Technologies and Processes	Le+E	Studienleistung Written exam	6	1
Signal Processing	Le+La	Written exam	6	2
Master's Module (6 months)		Thesis + Presentation	27 + 3	4

Le = Lecture, E = Exercise, La = Lab course

Compulsory Electives: Advanced Microsystems

→ Choose 5 from 8 modules; 30 of 48 credits

Module	Type	Exam	ECTS	Sem.
Assembly and Packaging Technology	Le+E	Written exam	6	1, 2 or 3
Micro-optics	Le+E	Written exam	6	1 or 3
Modelling and System Identification	Le+E	Written exam	6	1 or 3
Probability and Statistics	Le+E	Written exam	6	1 or 3
Sensors	Le+E	Written exam	6	1 or 3
Biomedical Microsystems	Le+E	Written exam	6	2
Micro-actuators	Le+E	Written Exam	6	2
Micro-fluidics	Le+E	Written Exam	6	2
Total to be selected			30	

Le = Lecture, E = Exercise, La = Lab course

Concentration Areas + Customized Courses

Concentration areas (21-30 ECTS)	ECTS		
Circuits and Systems			
Materials and Fabrication	Students have to choose one concentration area		
Biomedical Engineering			
Photonics			
Total	21-30		
Customized Course Selection	ECTS		
Courses from other faculties at the University of Freiburg, also courses on German language, scientific writing, project management	Students can chose		
Courses from the MSc MSE program			
Total	9		

Elective modules in concentrations

Circuits and Systems

- Angewandte Sensorschaltungstechnik
- Bayesian Methods for Sensing
- CMOS MEMS
- Wireless Sensor Systems
- Energy harvesting
- Analog CMOS Circuit Design
- Mixed-Signal CMOS Circuit Design
- Flight Control Laboratory
- Advanced Assembly and Packaging Technology
- Advanced Microcontroller Lab
- Power Electronics for E-Mobility
- Micro Acoustical Transducers
- Microcontroller Techniques Praktikum
- Model Predictive Control and Reinforcement Learning
- MST Design Lab II for Microsystems Engineering Numerical Optimal Control in Engineering - Project
- Numerical Optimization
- Numerical Optimization Project
- Race Car Control Laboratory
- RF- and Microwave Devices and Circuits
- RF- and Microwave Circuits and Systems
- RF- and Microwave Systems- Design Course
- Sensors and actuators circuit technology
- State Space Control Systems
- Thermoelektrik und thermische Messtechnik
- Wind Energy Systems
- Reliability Engineering

Materials and Fabrication

- Computational physics: material science
- Disposable sensors
- Electrochemical energy applications: fuel cells and electrolysis
- Electrochemical Methods for Engineers
- Energy storage and conversion using fuel cells
- Fortgeschrittene Siliziumtechnologie / Advanced Silicon Technology
- Functional Safety, Security and Sustainability: Active Resilience
- Hardware Design with the Finite-Element-Method
- Ceramic Materials for microsystems
- Contact, Adhesion, Friction
- Continuum mechanics I with exercises
- Continuum mechanics II with exercises
- Physics of Failure
- Lithography
- Materials for Electronic Systems
- Mechanical Properties and Degradation Mechanisms
- Methods of Material Analysis Microstructured Polymer Components
- Nanomaterials
- Nanotechnology
- Nano Laboratory
- Surface Analysis
- Surface Analysis Laboratory
- Optimierung
- Advanced engineering
- Polymer Processing and Microsystems Engineering
- Quantum Mechanics for Engineers
- Clean Room Laboratory for Engineers
- Quantification of Resilience
- Solar Energy
- Techniken zur Oberflächenmodifizierung / Surface coating Techniques
- Compound semiconductor devices
- From Microsystems to the Nanoworld
- Dynamics of Materials: Material Characterization

13.10.2022 MSc Microsystems Engineering 25

Elective modules in concentrations

Biomedical Engineering

- Analyse von Life Science Hochdurchsatzdaten mit Galaxy
- Selected Problems in Biosignal Processing
- Biofunctional Materials for medical microsystems and healthcare
- Biomedical Instrumentation I
- Biomedical Instrumentation II
- Biomedical Instrumentation Laboratory
- BioMEMS
- Bionic Sensors
- Biophysics of cardiac function and signals
- Biophysik Grundlagen und Konzepte
- Biotechnologie für Ingenieure I: Einführung, Molekular- Biotechnology for Engineers I: Introduction, Molecular- and Microbiology
- Biotechnology for Engineers II
- Ethical Aspects of Neurotechnology
- Fundamentals of electrical stimulation
- Introduction to data driven life sciences
- Introduction to physiological control systems
- Machine Learning
- Microfluidics II: Miniaturize, automate and parallelize biochemical analysis: From idea to product launch
- Microsystems technology in Medicine
- Nanobiotechnology
- Neurophysiology Laboratory
- Neuroprosthetics
- Neuroscience for Engineers
- Signal processing and analysis in brain signals
- Silicon-based Neural Technology
- Implant Manufacturing Technologies
- Implant Manufacturing Technologies Laboratory
- Biointerfaces I Basics for Bioanalytical Systems

Photonics

- Advanced Topics in Micro-Optics
- Lasers
- Basic Optics Lab
- Basic and Advanced Optics Lab
- Optical Materials
- Optical Properties of Micro and Nano Structures
- Optical Trapping and Particle Tracking
- Optical MEMS
- Optical Measurement Techniques
- Optical Micro-Sensors
- Optoelectronics
- Photonic Microscopy
- Photovoltaic Energy Conversion for engineers
- Photovoltaic Energy Conversion for engineers II
- Spektroskopische Methoden
- Wave Optics

Corona Information

- Teaching will take place primarily in a classroom setting
- No contact data collection
- No 3G (vaccination, test or recovery status) checks
- In the case of another CORONA wave during the winter semester, necessary measures will possibly be taken again
- It's recommended to voluntarily wear masks indoors

Corona Information-useful links

Faculty of Engineering:

https://www.tf.uni-freiburg.de/en/corona

University:

https://www.studium.uni-

freiburg.de/en?set_language=en

Student Services (SWFR):

https://www.swfr.de/en/corona-faqs/

Exams: The most important rules

- In addition to <u>registering for a module</u>, you need to → register for every exam you want to take: https://www.tf.uni-freiburg.de/en/studies-and-teaching/a-to-z-study-faq/de-registration-of-exams
- If failed, → you can repeat every exam once. Two exams can be repeated twice.
- If you fail an exam, → you will automatically be registered for the retake in the following semester.
- You can only withdraw from an exam, if you are ill or if there is an emergency in your family.
 https://www.tf.uni-freiburg.de/en/studies-and-teaching/a-to-z-study-faq/withdrawl-from-exams
- For more details, make sure to read the <u>exam regulations</u>.

Plagiarism is:

 Using someone else's texts, pictures, reports, data, solutions, whatever....

... without giving the source

Sources include:

- Books, the internet, colleagues, ...

To make it clear:

- Plagiarism is illegal
- The simple "if…then" loops:
 - If you plagiarize...(once)
 - ... then you fail
 - If you plagiarize repeatedly (=twice)
 - ... then your academic career is over.

Every student has a faculty mentor

- A professor as a contact person
- Assigned by the Dean of Studies

Student's contact for:

- Problems, questions, clarifications, job searches, recommendations, or just general advising

After graduation

Apply for a job

In Industry

- Find out what you like during your MSc program
- Use job portals and company websites to monitor the market
- Visit career workshops to gather tips how to apply
- Go to recruiting fairs

PhD. as research assistant

At the university

- Perform a research project (on your own)
- Look for an open position
- Apply
- Get paid for the PhD project
- Overtake responsibility as project assistant
- Support your professor with respect to educational tasks
- Duration: 3-5 years

Contact persons I

Dean of studies: Prof. Jürgen Wilde

- juergen.wilde@imtek.de
 0761-203 7291
- Program coordination:

Svenja Andresen

studiengangkoordination.mst@imtek.uni-freiburg.de
 0761-203 97940

- Student advisors:
 - studienberatung@imtek.de
 - Dr. Jochen Kieninger
 0761-203 7265
 - Dr. Oswald Prucker
 0761-203 7164

Contact persons II

Examination office

- Anne-Julchen Müller
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083

- Susanne Storck
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083

Thanks for your attention!

