

Msc. Microsystems Engineering -Introduction to the programme Prof. Dr. Jürgen Wilde

11 October 2021

Albert-Ludwigs-Universität Freiburg

The technology

The Airbus A380

- Approximately 1 Million single parts!
 - One Wing: 32,000 parts
- Costs: \$ 275 Millions
 - Average per single part \$ 275
- High effort for single part fabrication

Can you imagine such a system with 2 Million parts?

The DMD

- Digital Micro-mirror Device
- 1.6 cm x 1.6 cm
- 508,800 mirrors 17 μm x 24 μm
- ~ 2.2 million parts
- Price: ~ € 2 000
- Price / part: < 0.1 Cent
- Mass fabrications

Microsystems

- Many functions
- Small volume

Präsentationstitel

12.10.2021

Präsentationstitel

A huge variety in microsystems

UNI FREIBURG

- Medicine
 - Minimally-invasive surgery
 - Diagnostics

Communications

- Fiber optics
- Mobile phones

Consumer

- Autonomous networks
- Sensors

Industry

- Process management
- Instrumentation

Automobile

- Gyroscope
- Airbags

7

The career

Educational goal:

- To graduate students who can go from idea to product
- The required skills: The challenge
 - Problem definition
 - Solutions & evaluation

Design & development

- Fabrication
- Characterization & optimization
- Packaging
- System testing & qualification
- Transfer to production
- 12.10.2021- Marketing

starts now

- Technical excellence is a given...
 - ... but graduates also need:
 - Ability to work in a team
 - Social competence
 - Creativity
 - Openness to new ideas
 - Self-confidence
 - Communication skills
 - Entrepreneurial thinking
 - Ability to motivate, oneself and others
 - Leadership capabilities

Where can I go with my degree?

Microsystems engineers become:

 Entrepreneurs, technicians, engineers, group leaders, managers, CEOs, astronauts,...

Potential employers:

- Large & small companies of all types
- Startups and spin-offs

What do employers want?

- Potential for development
- Ability to learn
- Communications ability (in English **and** German!)
- Experience, experience, experience
- Particular skills? Not so much...

The department

- ► Faculty in operation since 1995
- Department of Computer Science (IIF)
 - 19 professors / ~ 840 students
- Department of Microsystems Engineering (IMTEK)
 - 22 professors / ~ 830 students
- Department of Sustainable Systems Engineering (INATECH)
 - 7 professors / ~ 250 students

MEMS Applications 11 **Prof. Dr. Roland Zengerle** Assembly and Packaging Technology Prof. Dr. Jürgen Wilde **Bio- and Nano-Photonics** н. Prof. Dr. Alexander Rohrbach **Biomedical Microtechnology Prof. Dr. Thomas Stieglitz Biomicrotechnology Prof. Dr. Ulrich Egert Chemistry and Physics of Interfaces** Prof. Dr. Jürgen Rühe **Design of Microsystems** Prof. Dr. Peter Wojas Electr. Instrumentation & Embedded Sys. Prof. Dr. Stefan Rupitsch Gas Sensors н. Prof. Dr. Juergen Woellenstein **Materials Process Technology** Prof. Dr. Thomas Hanemann Micro- and Material Mechanics **Prof. Dr. Christoph Eberl**

Microactuators Prof. Dr. Ulrike Wallrabe **Microelectronics Deputy: Dr. Matthias Keller Micro-optics Prof. Dr. Hans Zappe Microsystems Materials** Prof. Dr. Oliver Paul Nanotechnology **Prof. Dr. Margit Zacharias Optical Systems** Prof. Dr. Carsten Buse Sensors Prof. Dr. Gerald Urban Simulation Prof. Dr. Lars Pastewka **Smart Systems Integration** Prof. Dr. Alfons Dehé Systems Theory Prof. Dr. Moritz Diehl Process Technology **Prof. Dr. Bastian E. Rapp**

The curriculum

- MSc. Program = 120 ECTS
- ~ 30 ECTS per semester
- 1 ECTS = 30 hours work load
- Mandatory courses are offered every other semester.
- Exams are offered every semester.
- The exam regulations stipulate *which* courses are to be completed to get the degree, but you can decide *when* you want to take the respective course and exam.
- It is allowed to study more than 4 semesters.

- All programs are organized in modules.
- A module consists of one or several courses and course work.
- Module Components
 - Lectures German: Vorlesung (V)
 - Exercises German: Übung (Ü)
 - Laboratories German: Praktikum
 (Pr) oder Praktische Übung (PrÜ)
 - Seminars German: Seminar (S)

- Non-graded course work ("Studienleistungen", SL)
 - Exercises, reports, mid-term exams...
 - Are not part of your final grade, but may be part of a module (for example weekly exercise sheets)
 - May be graded, or judged only as "pass" or "fail"
 - Unlimited number of attempts

Graded course work ("Prüfungsleistungen", PL)

- Written or oral exams, reports, presentations,...
- Are always graded and count into your final grade
- Limited number of attempts, normally only 2

Module	Туре	Exam	ECTS	Sem
Microelectronics	Le+E	Written exam	6	1
Micro-mechanics	Le+E	Written exam	6	1
MST Design Laboratory I for Microsystems Engineering	La	Studien-leistung	6	1
MST Technologies and Processes	Le+E	Studien-leistung Written exam	6	1
Signal Processing	Le+La	Written exam	6	2
Master's Module (6 months)		Thesis + Presentation	27 + 3	4

Compulsory Electives: Advanced Microsystems → Choose 5 of 8

Module	Туре	Exam	ECTS	Sem.		
Assembly and Packaging Technology	Le+E	Written exam	6	1, 2 or 3		
Micro-optics	Le+E	Written exam	6	1 or 3		
Modelling and System Identification	Le+E	Written exam	6	1 or 3		
Probability and Statistics	Le+E	Written exam	6	1 or 3		
Sensors	Le+E	Written exam	6	1 or 3		
Biomedical Microsystems	Le+E	Written exam	6	2		
Micro-actuators	Le+E	Written Exam	6	2		
Micro-fluidics	Le+E	Written Exam	6	2		
Total to be selected			30			
La - Lastura E - Eversiaa La - Lab source						

Le = Lecture, E = Exercise, La = Lab course

UNI FREIBURG

Concentration Areas + Customized Courses

Concentration areas (21-30 ECTS)	ECTS	
Circuits and Systems		
Materials and Fabrication	Students have to choose one concentration area	
Biomedical Engineering		
Photonics		
Total	21-30	
Customized Course Selection	ECTS	
Courses from other faculties at the University of Freiburg, also courses on German language, scientific writing, project management	Students can chose	
Courses from the MSc MSE program		
Total	9	

Elective modules in concentrations

Materials and Fabrication

Circuits and Systems

	Angewandte Sensorschaltungstechnik	Computational physics: material science
	Bayesian Methods for Sensing	Disposable sensors
	CMOS MEMS	Electrochemical energy applications: fuel cells and electrolysis
	Wireless Sensor Systems	Electrochemical Methods for Engineers
	•	Energy storage and conversion using fuel cells
	Energy harvesting	Fortgeschrittene Siliziumtechnologie / Advanced Silicon Technology
	Analog CMOS Circuit Design	Functional Safety, Security and Sustainability: Active Resilience
	Mixed-Signal CMOS Circuit Design	Hardware Design with the Finite-Element-Method
	Flight Control Laboratory	Ceramic Materials for microsystems
	Advanced Assembly and Packaging Technology	Contact, Adhesion, Friction
		Continuum mechanics I with exercises
	Advanced Microcontroller Lab	Continuum mechanics II with exercises
	Power Electronics for E-Mobility	Physics of Failure
	Micro Acoustical Transducers	Lithography
	Microcontroller Techniques - Praktikum	Materials for Electronic Systems
_		Mechanical Properties and Degradation Mechanisms
	Model Predictive Control and Reinforcement Learning	Methods of Material Analysis Microstructured Polymer Components
	MST Design Lab II for Microsystems Engineering	Nanomaterials
	Numerical Optimal Control in Engineering - Project	Nanotechnology
	Numerical Optimization	Nano - Laboratory
	Numerical Optimization Project	Surface Analysis
	Race Car Control Laboratory	Surface Analysis Laboratory
	-	 Optimierung
	RF- and Microwave Devices and Circuits	 Advanced engineering Polymer Processing and Microsystems Engineering
	RF- and Microwave Circuits and Systems	Quantum Mechanics for Engineers
1.1	RF- and Microwave Systems- Design Course	Clean Room Laboratory for Engineers
	Sensors and actuators circuit technology	Quantification of Resilience
	State Space Control Systems	Solar Energy
	Thermoelektrik und thermische Messtechnik	Techniken zur Oberflächenmodifizierung / Surface coating Techniques
		Compound semiconductor devices
	Wind Energy Systems	From Microsystems to the Nanoworld
	Reliability Engineering	Dynamics of Materials: Material Characterization

UNI FREIBURG

Elective modules in concentrations

11

11

11

н.

Biomedical Engineering

Analyse von Life Science Hochdurchsatzdaten mit Galaxy
Selected Problems in Biosignal Processing
Biofunctional Materials - for medical microsystems and healthcare
Biomedical Instrumentation I
Biomedical Instrumentation II
Biomedical Instrumentation - Laboratory
BioMEMS
Bionic Sensors
Biophysics of cardiac function and signals
Biophysik - Grundlagen und Konzepte
Biotechnologie für Ingenieure I: Einführung, Molekular- Biotechnology for Engineers I: Introduction, Molecular- and Microbiology
Biotechnology for Engineers II
Ethical Aspects of Neurotechnology
Fundamentals of electrical stimulation
Introduction to data driven life sciences
Introduction to physiological control systems
Machine Learning
Microfluidics II: Miniaturize, automate and parallelize biochemical analysis: From idea to product launch
Microsystems technology in Medicine
Nanobiotechnology
Neurophysiology - Laboratory
Neuroprosthetics
Neuroscience for Engineers
Signal processing and analysis in brain signals
Silicon-based Neural Technology
Implant Manufacturing Technologies
Implant Manufacturing Technologies - Laboratory

Biointerfaces I - Basics for Bioanalytical Systems

Photonics

Advanced Topics in Micro-Optics Lasers **Basic Optics Lab** Basic and Advanced Optics Lab **Optical Materials Optical Properties of Micro and Nano Structures Optical Trapping and Particle Tracking Optical MEMS Optical Measurement Techniques Optical Micro-Sensors Optoelectronics** Photonic Microscopy Photovoltaic Energy Conversion for engineers Photovoltaic Energy Conversion for engineers II Spektroskopische Methoden Wave Optics

Corona Information I & 3G procedure

- WS 21/22: All courses (except for lab courses) can be taken online
- Some lecturers will offer on-campus sessions in addition to the online offer
- Online lectures: Either live-stream or recorded lectures
- Online exercises: Students will send or upload the exercises they solved. Lecturer will give individual feedback and/or offer Q&A sessions or online forums
- More detailed information will be provided by each lecturer for his/her course by email or via ILIAS
- Written exams can only be taken on-campus

Faculty of Engineering:

https://www.tf.uni-freiburg.de/en/corona

University:

https://www.studium.uni-

freiburg.de/en?set_language=en

Student Services (SWFR):

https://www.swfr.de/en/corona-faqs/

MSE courses, first semester

Mon	Tue	Wed	Thu	Fri
	8-10 Probability & Stat. Lecture SR 01-009/13 building 101	8-10 Probability & Stat. Excercises SR 01-009/13 building 101	8-10 Micro-electronics Exercises HS 00 026 μ -lecture hall (building 101)	
10-12 Micromechanics Lecture HS 00 026 μ -lecture hall (building 101)	10-12 Micro-optics Lecture SR 00-010/14 building 101	10-12 Micro-electronics Lecture HS 00 026 μ -lecture hall (building 101)	12-13 Sensors Lecture SR 01-009/13 Building 101	10-12 Micromechanics Exercises 101 00 010/14
	13-14 MST Technologies & Processes Exercises SR 01-009/13 building 101		12-14 Micro-optics Exercises SR 01-016/18 Building 101	12-14 MST Design Lab I Lab course online
	14-16 Sensors Lecture SR 01-009/13 Building 101		14-16 MST Technologies & Processes, lecture SR 00-010/14 building 101	14-16 Micro-optics Exercises SR 00-006 Building 051
	16-18 MST Design Lab I Lecture HS 00-006, building 082		16-18 Sensors Lab 00 035 Building 078	16-18 Sensors Lab 00 035 Building 078
			18-20 Sensors Lab 00 035 Building 078	

- In addition to <u>registering for a module</u>, you need to

 register for every exam you want to take:
 <u>https://www.tf.uni-freiburg.de/en/studies-and-teaching/a-to-z-study-faq/de-registration-of-exams</u>
- If failed, → you can repeat every exam once. Two exams can be repeated twice.
- If you fail an exam, → you will automatically be registered for the retake in the following semester.
- You can only withdraw from an exam, if you are ill or if there is an emergency in your family. <u>https://www.tf.uni-freiburg.de/en/studies-and-teaching/a-to-zstudy-faq/withdrawl-from-exams</u>
- For more details, make sure to read the <u>exam regulations</u>.

- Plagiarism is:
 - Using someone else's texts, pictures, reports, data, solutions, whatever....
 - ... without giving the source
- Sources include:
 - Books, the internet, colleagues, .
- To make it clear:
 - Plagiarism is illegal
- The simple "if...then" loops:
 - If you plagiarize...(once)
 - ... then you fail
 - If you plagiarize repeatedly (=twice)
 - ... then your academic career is over.

- Every student has a faculty mentor
 - A professor as a contact person
 - Assigned by the Dean of Studies
- Student's contact for:
 - Problems, questions, clarifications, job searches, recommendations, or just general advising

Präsentationstitel

After graduation

In Industry

- Find out what you like during your MSc program
- Use job portals and company websites to monitor the market
- Visit career workshops to gather tips how to apply
- Go to recruiting fairs

- At the university
 - Perform a research project (on your own)
 - Look for an open position
 - Apply
 - Get paid for the PhD project
 - Overtake responsibility as project assistant
 - Support your professor with respect to educational tasks
 - Duration: 3-5 years

Dean of studies: Prof. Jürgen Wilde

- juergen.wilde@imtek.de
 0761-203 7291
- Program coordination:

Svenja Andresen

- <u>studiengangkoordination.mst@imtek.uni-freiburg.de</u>
 0761-203 97940
- Student advisors:
 - <u>studienberatung@imtek.de</u>
 - Dr. Jochen Kieninger 0761-203 7265
 - Dr. Oswald Prucker 0761-203 7164

Präsentationstitel

Examination office

- Anne-Julchen Müller
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083
- Susanne Storck
 - pruefungsamt@tf.uni-freiburg.de
 - 203 8083

Thank you very much for your attention !

Präsentationstitel